952 resultados para nanoparticle precipitation


Relevância:

60.00% 60.00%

Publicador:

Resumo:

Femtosecond pulsed lasers have been widely used for materials microprocessing. Due to their ultrashort pulse width and ultrahigh light intensity, the process is generally characterized by the nonthermal diffusion process. We observed various induced microstructures such as refractive-index-changed structures, color center defects, microvoids and microcracks in transparent materials (e.g., glasses after the femtosecond laser irradiation), and discussed the possible applications of the microstructures in the fabrication of various micro optical devices [e.g., optical waveguides, microgratings, microlenses, fiber attenuators, and three-dimensional (3D) optical memory]. In this paper, we review our recent research developments on single femtosecond-laser-induced nanostructures. We introduce the space-selective valence state manipulation of active ions, precipitation and control of metal nanoparticles and light polarization-dependent permanent nanostructures, and discuss the mechanisms and possible applications of the observed phenomena.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

La structuration laser femtoseconde de verres d’oxydes est aujourd’hui un domaine de recherche en pleine expansion. L’interaction laser-matière est de plus en plus utilisée pour sa facilité de mise en œuvre et les nombreuses applications qui découlent de la fabrication des composants photoniques, déjà utilisés dans l’industrie des hautes technologies. En effet, un faisceau d’impulsions ultracourtes focalisé dans un matériau transparent atteint une intensité suffisante pour modifier la matière en trois dimensions sur des échelles micro et nanométriques. Cependant, l’interaction laser-matière à ces régimes d’intensité n’est pas encore complètement maîtrisée, et les matériaux employés ne sont pas entièrement adaptés aux nouvelles applications photoniques. Par ce travail de thèse, nous nous efforçons donc d’apporter des réponses à ces interrogations. Le mémoire est articulé autour de deux grands volets. Le premier aborde la question de l’interaction de surface de verres avec de telles impulsions lumineuses qui mènent à l’auto-organisation périodique de la matière structurée. L’influence du dopage en ions photosensibles et des paramètres d’irradiation est étudiée afin d’appuyer et de conforter le modèle d’incubation pour la formation de nanoréseaux de surface. À travers une approche innovante, nous avons réussi à apporter un contrôle de ces structures nanométriques périodiques pour de futures applications. Le second volet traite de cristallisation localisée en volume induite en grande partie par l’interaction laser-matière. Plusieurs matrices vitreuses, avec différents dopages en sel d’argent, ont été étudiées pour comprendre les mécanismes de précipitation de nanoparticules d’argent. Ce travail démontre le lien entre la physicochimie de la matrice vitreuse et le caractère hors équilibre thermodynamique de l’interaction qui influence les conditions de nucléation et de croissance de ces nano-objets. Tous ces résultats sont confrontés à des modélisations de la réponse optique du plasmon de surface des nanoparticules métalliques. Les nombreuses perspectives de ce travail ouvrent sur de nouvelles approches quant à la caractérisation, aux applications et à la compréhension de l’interaction laser femtoseconde pour l’inscription directe de briques photoniques dans des matrices vitreuses.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Introduction: In this study, colloidal gold nanoparticle and precipitation of an insoluble product formed by HRP-biocatalyzed oxidation of 3,3'-diaminobenzidine (DAB) in the presence of H2O2 were used to enhance the signal obtained from the surface plasmon resonance biosensor.

Methods: The colloidal gold nanoparticle was synthesized as described by Turkevitch et al., and their surface was firstly functionalized with HS(CH2)11(OCH2CH2)3COOH (OEG3¬-COOH) by self assembling technique. Thereafter, those OEG3-COOH functionalized nanoparticles were covalently conjugated with horseradish peroxidase (HRP) and anti-IgG antibody (specific to the Fc portion of all human IgG subclasses) to form an enzyme-immunogold complex. Characterization was performed by several methods: UV-Vis absorption, dynamic light scattering (DLS), transmission electron microscopy (TEM) and FTIR. The as-prepared enzyme-immunogold complex has been applied in enhancement of SPR immunoassay. A sensor chip used in the experiment was constructed by using 1:10 molar ratio of HS(CH2)11(OCH2CH2)6COOH and HS(CH2)11(OCH2CH2)3OH. The capture protein, GAD65 (autoantigen) which is recognized by anti-GAD antibody (autoantibody) in the sera of insulin-dependent diabetes mellitus patients, was immobilized onto the 1:10 surface via biotin-streptavidin interaction.

Results and conclusions: In the research, we reported the influences of gold nanoparticle and enzyme precipitation on the enhancement of SPR signal. Gold nanoparticle showed its enhancement as being consistent with other previous studies, while the enzyme precipitation using DAB substrate was applied for the first time and greatly amplified the SPR detection. As the results, anti-GAD antibody could be detected at pg/ml level which is far higher than that of commercial ELISA detection kit. This study indicates another way to enhance SPR measurement, and it is generally applicable to other SPR-based immunoassays.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Precipitation involving mixing of two sets of reverse micellar solutions-containing a reactant and precipitant respectively-has been analyzed. Particle formation in such systems has been simulated by a Monte Carlo (MC) scheme (Li, Y.; Park, C. W. Langmuir 1999, 15, 952), which however is very restrictive in its approach. We have simulated particle formation by developing a general Monte Carlo scheme, using the interval of quiescence technique (IQ). It uses Poisson distribution with realistic, low micellar occupancies of reactants, Brownian collision of micelles with coalescence efficiency, fission of dimers with binomial redispersion of solutes, finite nucleation rate of particles with critical number of molecules, and instantaneous particle growth. With the incorporation of these features, the previous work becomes a special case of our simulation. The present scheme was then used to predict experimental data on two systems. The first is the experimental results of Lianos and Thomas (Chem. Phys. Lett. 1986, 125, 299, J. Colloid Interface Sci. 1987, 117, 505) on formation of CdS nanoparticles. They reported the number of molecules in a particle as a function of micellar size and reactant concentrations, which have been predicted very well. The second is on the formation of Fe(OH)(3) nanoparticles, reported by Li and Park. Our simulation in this case provides a better prediction of the experimental particle size range than the prediction of the authors. The present simulation scheme is general and can be applied to explain nanoparticle formation in other systems.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Radiatively heated levitated functional droplets with nanosilica suspensions exhibit three distinct stages namely pure evaporation, agglomeration, and finally structure formation. The temporal history of the droplet surface temperature shows two inflection points. One inflection point corresponds to a local maximum and demarcates the end of transient heating of the droplet and domination of vaporization. The second inflection point is a local minimum and indicates slowing down of the evaporation rate due to surface accumulation of nanoparticles. Morphology and final precipitation structures of levitated droplets are due to competing mechanisms of particle agglomeration, evaporation, and shape deformation. In this work, we provide a detailed analysis for each process and propose two important timescales for evaporation and agglomeration that determine the final diameter of the structure formed. It is seen that both agglomeration and evaporation timescales are similar functions of acoustic amplitude (sound pressure level), droplet size, viscosity, and density. However, we show that while the agglomeration timescale decreases with initial particle concentration, the evaporation timescale shows the opposite trend. The final normalized diameter can be shown to be dependent solely on the ratio of agglomeration to evaporation timescales for all concentrations and acoustic amplitudes. The structures also exhibit various aspect ratios (bowls, rings, spheroids) which depend on the ratio of the deformation timescale (t(def)) and the agglomeration timescale (t(g)). For t(def) < t(g), a sharp peak in aspect ratio is seen at low concentrations of nanosilica which separates high aspect ratio structures like rings from the low aspect ratio structures like bowls and spheroids. (C) 2013 American Institute of Physics. http://dx.doi.org/10.1063/1.4775791]

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Graphene oxide-CoFe2O4 nanoparticle composites were synthesized using a two step synthesis method in which graphene oxide was initially synthesized followed by precipitation of CoFe2O4 nanoparticles in a reaction mixture containing graphene oxide. Samples were extracted from the reaction mixture at different times at 80 degrees C. All the extracted samples contained CoFe2O4 nanoparticles formed over the graphene oxide. It was observed that the increase in the reflux time significantly increased the saturation magnetization value for the superparamagnetic nanoparticles in the composite. It was also noticed that the size of the nanoparticles increased with increase in the reflux time. Transverse relaxivity of the water protons increased monotonically with increase in the reflux time. Whereas, the longitudinal relaxivity value initially increased and then decreased with the reflux time. Graphene oxide-CoFe2O4 nanoparticle composites also exhibit biocompatibility towards the MCF-7 cell line.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Insulin has been encapsulated in poly(lactic-co-glycolic acid) (PLGA) microspheres by solid-in-oil-in-oil (S/O/O) emulsion technique using DMF/corn oil as new solvent pairs. To get better encapsulation efficiency, insulin nanoparticles were prepared by the modified isoelectric point precipitation method so that it had good dispersion in the inner oil phase. The resulting microspheres had drug loading of 10% (w/w), while the encapsulation efficiency could be up to 90-100%. And the insulin release from the microspheres could last for 60 days. Microspheres encapsulated original insulin with the same method had lower encapsulation efficiency, and shorter release period. Laser scanning confocal microscopy indicated the insulin nanoparticle and original insulin had different distribution in microspheres. The results suggested that using insulin nanoparticle was better than original insulin for microsphere preparation by S/O/O method.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Multiwall carbon nanotubes (MWCNTs) possessing an average inner diameter of 150 nm were synthesized by template assisted chemical vapor deposition over an alumina template. Aqueous ferrofluid based on superparamagnetic iron oxide nanoparticles (SPIONs) was prepared by a controlled co-precipitation technique, and this ferrofluid was used to fill the MWCNTs by nanocapillarity. The filling of nanotubes with iron oxide nanoparticles was confirmed by electron microscopy. Selected area electron diffraction indicated the presence of iron oxide and graphitic carbon from MWCNTs. The magnetic phase transition during cooling of the MWCNT–SPION composite was investigated by low temperature magnetization studies and zero field cooled (ZFC) and field cooled experiments. The ZFC curve exhibited a blocking at ∼110 K. A peculiar ferromagnetic ordering exhibited by the MWCNT–SPION composite above room temperature is because of the ferromagnetic interaction emanating from the clustering of superparamagnetic particles in the constrained volume of an MWCNT. This kind of MWCNT–SPION composite can be envisaged as a good agent for various biomedical applications

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Titanium dioxide with and without the addition of neodymium ions was prepared using sol-gel and precipitation methods. The resulting catalysts were characterized by thermal analysis, X-ray diffraction and BET specific surface area. Neodymium addition exerted a remarkable influence on the phase transition temperature and the surface properties of the TiO(2) matrix. TiO(2) samples synthesized by precipitation exhibit an exothermic event related from the amorphous to anatase phase transition at 510 degrees C, whereas in Nd-doped TiO(2) this transition occurred at 527 degrees C. A similar effect was observed in samples obtained using sol-gel method. The photocatalytic reactivity of the catalysts was evaluated by photodegradation of Remazol Black B (RB) under ultraviolet irradiation. Nd-doped TiO(2) showed enhanced photodegradation ability compared to undoped TiO(2) samples, independent of the method of synthesis. In samples obtained by sol-gel, RB decoloration was enhanced by 16% for TiO(2) doped with 0.5% neodymium ions. (C) 2010 Elsevier B.V. All rights reserved.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The preparation of superparamagnetic magnetite (Fe(3)O(4)) nanoparticles by electro-precipitation in ethanol is proposed. Particle average size can be set from 4.4 to 9 nm with a standard deviation around 20%. Combination of wide-angle X-ray scattering (WAXS), Electron energy loss spectroscopy (EELS) and Mossbauer spectroscopy characterizations clearly identifies the particles as magnetite single-crystals (Fe(3)O(4)). (C) 2008 Elsevier B.V. All rights reserved.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

In this study a novel method MicroJet reactor technology was developed to enable the custom preparation of nanoparticles. rnDanazol/HPMCP HP50 and Gliclazide/Eudragit S100 nanoparticles were used as model systems for the investigation of effects of process parameters and microjet reactor setup on the nanoparticle properties during the microjet reactor construction. rnFollowing the feasibility study of the microjet reactor system, three different nanoparticle formulations were prepared using fenofibrate as model drug. Fenofibrate nanoparticles stabilized with poloxamer 407 (FN), fenofibrate nanoparticles in hydroxypropyl methyl cellulose phthalate (HPMCP) matrix (FHN) and fenofibrate nanoparticles in HPMCP and chitosan matrix (FHCN) were prepared under controlled precipitation using MicroJet reactor technology. Particle sizes of all the nanoparticle formulations were adjusted to 200-250 nm. rnThe changes in the experimental parameters altered the system thermodynamics resulting in the production of nanoparticles between 20-1000 nm (PDI<0.2) with high drug loading efficiencies (96.5% in 20:1 polymer:drug ratio).rnDrug releases from all nanoparticle formulations were fast and complete after 15 minutes both in FaSSIF and FeSSIF medium whereas in mucodhesiveness tests, only FHCN formulation was found to be mucoadhesive. Results of the Caco-2 studies revealed that % dose absorbed values were significantly higher (p<0.01) for FHCN in both cases where FaSSIF and FeSSIF were used as transport buffer.rn

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Vascular and soft tissue calcification contributes to cardiovascular morbidity and mortality in both the general population and CKD. Because calcium and phosphate serum concentrations are near supersaturation, the balance of inhibitors and promoters critically influences the development of calcification. An assay that measures the overall propensity for calcification to occur in serum may have clinical use. Here, we describe a nanoparticle-based assay that detects, in the presence of artificially elevated calcium and phosphate concentrations, the spontaneous transformation of spherical colloidal primary calciprotein particles (CPPs) to elongate crystalline secondary CPPs. We used characteristics of this transition to describe the intrinsic capacity of serum to inhibit the precipitation of calcium and phosphate. Using this assay, we found that both the sera of mice deficient in fetuin-A, a serum protein that inhibits calcification, and the sera of patients on hemodialysis have reduced intrinsic properties to inhibit calcification. In summary, we developed a nanoparticle-based test that measures the overall propensity for calcification in serum. The clinical use of the test requires evaluation in a prospective study.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The melting of spherical nanoparticles is considered from the perspective of heat flow in a pure material and as a moving boundary (Stefan) problem. The dependence of the melting temperature on both the size of the particle and the interfacial tension is described by the Gibbs-Thomson effect, and the resulting two-phase model is solved numerically using a front-fixing method. Results show that interfacial tension increases the speed of the melting process, and furthermore, the temperature distribution within the solid core of the particle exhibits behaviour that is qualitatively different to that predicted by the classical models without interfacial tension.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The self-assembling behavior and microscopic structure of zinc oxide nanoparticle Langmuir-Blodgett monolayer films were investigated for the case of zinc oxide nanoparticles coated with a hydrophobic layer of dodecanethiol. Evolution of nanoparticle film structure as a function of surface pressure (π) at the air-water interface was monitored in situ using Brewster’s angle microscopy, where it was determined that π=16 mN/m produced near-defect-free monolayer films. Transmission electron micrographs of drop-cast and Langmuir-Schaefer deposited films of the dodecanethiol-coated zinc oxide nanoparticles revealed that the nanoparticle preparation method yielded a microscopic structure that consisted of one-dimensional rodlike assemblies of nanoparticles with typical dimensions of 25 x 400 nm, encased in the organic dodecanethiol layer. These nanoparticle-containing rodlike micelles were aligned into ordered arrangements of parallel rods using the Langmuir-Blodgett technique.