1000 resultados para nanofiber membrane


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Filtration membrane technology has already been employed to remove various organic effluents produced from the textile, paper, plastic, leather, food and mineral processing industries. To improve membrane efficiency and alleviate membrane fouling, an integrated approach is adopted that combines membrane filtration and photocatalysis technology. In this study, alumina nanofiber (AF) membranes with pore size of about 10 nm (determined by the liquid-liquid displacement method) have been synthesized through an in situ hydrothermal reaction, which permitted a large flux and achieved high selectivity. Silver nanoparticles (Ag NPs) are subsequently doped on the nanofibers of the membranes. Silver nanoparticles can strongly absorb visible light due to the surface plasmon resonance (SPR) effect, and thus induce photocatalytic degradation of organic dyes, including anionic, cationic and neutral dyes, under visible light irradiation. In this integrated system, the dyes are retained on the membrane surface, their concentration in the vicinity of the Ag NPs are high and thus can be efficiently decomposed. Meanwhile, the usual flux deterioration caused by the accumulation of the filtered dyes in the passage pores can be avoided. For example, when an aqueous solution containing methylene blue is processed using an integrated membrane, a large flux of 200 L m-2 h-1 and a stable permeating selectivity of 85% were achieved. The combined photocatalysis and filtration function leads to superior performance of the integrated membranes, which have a potential to be used for the removal of organic pollutants in drinking water.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

A novel sensitive humidity nanosensor based on Na1-doped ZnO nanofiber membrane has been prepared via electrospinning and calcination. The product was characterized by scanning electron microscopy and X-ray diffraction. During the whole relative humidity (11%–95%) measurement, the response and recovery time is about 3 and 6 s, respectively, with good linearity, and reproducibility. These remarkable and sensitive sensing performances make our product a good candidate in fabricating humidity sensors.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

Large-scale purification/separation of bio-substances is a key technology required for rapid production of biological substances in bioengineering. Membrane filtration is a new separation process and has potential to be used for concentration (removal of solvent), desalting (removal of low molecular weight compounds), clarification (removal of particles), and fractionation (protein-protein separation). In this study, we developed an efficient membrane for protein separation based on ceramic nanofibers. Alumina nanofibers were prepared on a porous support and formed large flow passages. The radical changes in membrane structure provided new ceramic membranes with a large porosity (more than 70%) due to the replacement of bulk particles with fine fibers as building components. The pore size had an average of 11 nm and pure water flux was approximately 360 L•h-1•m-2•bar-1. Further surface modification with a self-assembled monolayer of (3-aminopropyl) triethoxysilane enhanced the membrane filtration properties. Characterization with SEM, FTIR, contact angle, and proteins separation tests indicated that the fibril layers uniformly spread on the surface of the porous support. Moreover, the membrane surface was changed from hydrophilic to hydrophobic after silane groups were grafted. It demonstrated that the silane-grafted alumina fiber membrane can reject 100% BSA protein and 92% cellulase protein. It was also able to retain 75% trypsin protein while maintaining a permeation flux of 48 L•h-1•m-2•bar-1.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

Randomly orientated electrospun poly(vinylidene fluoride) nanofiber membranes were directly used as active layers to make mechanical-to-electrical energy conversion devices. Without any extra poling treatment, the device can generate high electrical outputs upon receiving a mechanical impact. The device also showed long-term working stability and ability to drive electronic devices. Such a nanofiber membrane device may serve as a simple but efficient energy source for self-powered electronics.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

In this work, we have proven that starch nanofibrous membranes with high tensile strength, water stability and non-cytotoxicity can be produced by electrospinning of starch solution and post-treatment with GTA in vapor phase. GTA vapor phase crosslinking plays a key role in forming water-stable nanofiber membrane and improving the mechanical properties. Comparing with non-crosslinked starch fibers, the crosslinked fibers are increased by nearly 10 times in tensile strength. The crosslinked starch fibrous membranes are non-cytotoxic. They may find applications in the fields of tissue engineering, pharmaceutical therapy and medical.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

We report the development of porous membranes by thermally induced phase separation of a PS/PVME (polystyrene/polyvinylmethyl ether]) blend, which is a typical LCST mixture. The morphology of the membrane after etching out the PVME phase was characterized by scanning electron microscopy. To give the membrane an antibacterial surface, polystyrene (PS) and polyvinyl(methyl ether)]-alt-maleic anhydride (PVME-MAH) with silver nanoparticles (nAg) were electrospun on the membrane surface. Pure water flux was evaluated by using a cross-flow membrane setup. The microgrooved fibers changed the flux across the membrane depending on the surface properties. The antibacterial properties of the membrane were confirmed by the reduction in the colony count of E. coli. The SEM images show the disruption of the bacterial cell membrane and the antibacterial mechanism was discussed.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Ag/AgCl composite nanoparticles/polyacrylonitrile nanofiber films were prepared by electrospinning and subsequent in-situ reduction combining in-situ oxidation strategy. Electrospinning was firstly used to fabricate PAN/AgNO3 composite nanofibers; then the AgNO3 was reduced by in-situ reduction with glycol; finally, an in-situ oxidation between Ag nanoparticles and FeCl3 solution was carried on to prepare the compo-site nanofiber films. The as-prepared materials can be used as high-performance photocatalysts, taking the advantage of the visible-light activity, flexibility, and high photocatalytic kinetics. The present method is helpful for the development of the high-performance membrane based photocatalysts.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The first use of organic ionic plastic crystals (OIPCs) as CO2 separation membranes is reported. The novel OIPC/PVDF nanofiber composites show CO2/N2 ideal selectivities of 30 at 35 °C. The dependence of gas permeability on the thermal phase of the plastic crystals is discussed.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This work is concerned with the genetic basis of normal human pigmentation variation. Specifically, the role of polymorphisms within the solute carrier family 45 member 2 (SLC45A2 or membrane associated transporter protein; MATP) gene were investigated with respect to variation in hair, skin and eye colour ― both between and within populations. SLC45A2 is an important regulator of melanin production and mutations in the gene underly the most recently identified form of oculocutaneous albinism. There is evidence to suggest that non-synonymous polymorphisms in SLC45A2 are associated with normal pigmentation variation between populations. Therefore, the underlying hypothesis of this thesis is that polymorphisms in SLC45A2 will alter the function or regulation of the protein, thereby altering the important role it plays in melanogenesis and providing a mechanism for normal pigmentation variation. In order to investigate the role that SLC45A2 polymorphisms play in human pigmentation variation, a DNA database was established which collected pigmentation phenotypic information and blood samples of more than 700 individuals. This database was used as the foundation for two association studies outlined in this thesis, the first of which involved genotyping two previously-described non-synonymous polymorphisms, p.Glu272Lys and p.Phe374Leu, in four different population groups. For both polymorphisms, allele frequencies were significantly different between population groups and the 272Lys and 374Leu alleles were strongly associated with black hair, brown eyes and olive skin colour in Caucasians. This was the first report to show that SLC45A2 polymorphisms were associated with normal human intra-population pigmentation variation. The second association study involved genotyping several SLC45A2 promoter polymorphisms to determine if they also played a role in pigmentation variation. Firstly, the transcription start site (TSS), and hence putative proximal promoter region, was identified using 5' RNA ligase mediated rapid amplification of cDNA ends (RLM-RACE). Two alternate TSSs were identified and the putative promoter region was screened for novel polymorphisms using denaturing high performance liquid chromatography (dHPLC). A novel duplication (c.–1176_–1174dupAAT) was identified along with other previously described single nucleotide polymorphisms (c.–1721C>G and c.–1169G>A). Strong linkage disequilibrium ensured that all three polymorphisms were associated with skin colour such that the –1721G, +dup and –1169A alleles were associated with olive skin in Caucasians. No linkage disequilibrium was observed between the promoter and coding region polymorphisms, suggesting independent effects. The association analyses were complemented with functional data, showing that the –1721G, +dup and –1169A alleles significantly decreased SLC45A2 transcriptional activity. Based on in silico bioinformatic analysis that showed these alleles remove a microphthalmia-associated transcription factor (MITF) binding site, and that MITF is a known regulator of SLC45A2 (Baxter and Pavan, 2002; Du and Fisher, 2002), it was postulated that SLC45A2 promoter polymorphisms could contribute to the regulation of pigmentation by altering MITF binding affinity. Further characterisation of the SLC45A2 promoter was carried out using luciferase reporter assays to determine the transcriptional activity of different regions of the promoter. Five constructs were designed of increasing length and their promoter activity evaluated. Constitutive promoter activity was observed within the first ~200 bp and promoter activity increased as the construct size increased. The functional impact of the –1721G, +dup and –1169A alleles, which removed a MITF consensus binding site, were assessed using electrophoretic mobility shift assays (EMSA) and expression analysis of genotyped melanoblast and melanocyte cell lines. EMSA results confirmed that the promoter polymorphisms affected DNA-protein binding. Interestingly, however, the protein/s involved were not MITF, or at least MITF was not the protein directly binding to the DNA. In an effort to more thoroughly characterise the functional consequences of SLC45A2 promoter polymorphisms, the mRNA expression levels of SLC45A2 and MITF were determined in melanocyte/melanoblast cell lines. Based on SLC45A2’s role in processing and trafficking TYRP1 from the trans-Golgi network to stage 2 melanosmes, the mRNA expression of TYRP1 was also investigated. Expression results suggested a coordinated expression of pigmentation genes. This thesis has substantially contributed to the field of pigmentation by showing that SLC45A2 polymorphisms not only show allele frequency differences between population groups, but also contribute to normal pigmentation variation within a Caucasian population. In addition, promoter polymorphisms have been shown to have functional consequences for SLC45A2 transcription and the expression of other pigmentation genes. Combined, the data presented in this work supports the notion that SLC45A2 is an important contributor to normal pigmentation variation and should be the target of further research to elucidate its role in determining pigmentation phenotypes. Understanding SLC45A2’s function may lead to the development of therapeutic interventions for oculocutaneous albinism and other disorders of pigmentation. It may also help in our understanding of skin cancer susceptibility and evolutionary adaptation to different UV environments, and contribute to the forensic application of pigmentation phenotype prediction.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Infection of plant cells by potyviruses induces the formation of cytoplasmic inclusions ranging in size from 200 to 1000 nm. To determine if the ability to form these ordered, insoluble structures is intrinsic to the potyviral cytoplasmic inclusion protein, we have expressed the cytoplasmic inclusion protein from Potato virus Y in tobacco under the control of the chrysanthemum ribulose-1,5-bisphosphate carboxylase small subunit promoter, a highly active, green tissue promoter. No cytoplasmic inclusions were observed in the leaves of transgenic tobacco using transmission electron microscopy, despite being able to clearly visualize these inclusions in Potato virus Y infected tobacco leaves under the same conditions. However, we did observe a wide range of tissue and sub-cellular abnormalities associated with the expression of the Potato virus Y cytoplasmic inclusion protein. These changes included the disruption of normal cell morphology and organization in leaves, mitochondrial and chloroplast internal reorganization, and the formation of atypical lipid accumulations. Despite these significant structural changes, however, transgenic tobacco plants were viable and the results are discussed in the context of potyviral cytoplasmic inclusion protein function.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Traditional ceramic separation membranes, which are fabricated by applying colloidal suspensions of metal hydroxides to porous supports, tend to suffer from pinholes and cracks that seriously affect their quality. Other intrinsic problems for these membranes include dramatic losses of flux when the pore sizes are reduced to enhance selectivity and dead-end pores that make no contribution to filtration. In this work, we propose a new strategy for addressing these problems by constructing a hierarchically structured separation layer on a porous substrate using large titanate nanofibers and smaller boehmite nanofibers. The nanofibers are able to divide large voids into smaller ones without forming dead-end pores and with the minimum reduction of the total void volume. The separation layer of nanofibers has a porosity of over 70% of its volume, whereas the separation layer in conventional ceramic membranes has a porosity below 36% and inevitably includes dead-end pores that make no contribution to the flux. This radical change in membrane texture greatly enhances membrane performance. The resulting membranes were able to filter out 95.3% of 60-nm particles from a 0.01 wt % latex while maintaining a relatively high flux of between 800 and 1000 L/m2·h, under a low driving pressure (20 kPa). Such flow rates are orders of magnitude greater than those of conventional membranes with equal selectivity. Moreover, the flux was stable at approximately 800 L/m2·h with a selectivity of more than 95%, even after six repeated runs of filtration and calcination. Use of different supports, either porous glass or porous alumina, had no substantial effect on the performance of the membranes; thus, it is possible to construct the membranes from a variety of supports without compromising functionality. The Darcy equation satisfactorily describes the correlation between the filtration flux and the structural parameters of the new membranes. The assembly of nanofiber meshes to combine high flux with excellent selectivity is an exciting new direction in membrane fabrication.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Conventional clinical therapies are unable to resolve osteochondral defects adequately, hence tissue engineering solutions are sought to address the challenge. A biphasic implant which was seeded with Mesenchymal Stem Cells (MSC) and coupled with an electrospun membrane was evaluated as an alternative. This dual phase construct comprised of a Polycaprolactone (PCL) cartilage scaffold and a Polycaprolactone - Tri Calcium Phosphate (PCL - TCP) osseous matrix. Autologous MSC was seeded into the entire implant via fibrin and the construct was inserted into critically sized osteochondral defects located at the medial condyle and patellar groove of pigs. The defect was resurfaced with a PCL - collagen electrospun mesh that served as a substitute for periosteal flap in preventing cell leakage. Controls either without implanted MSC or resurfacing membrane were included. After 6 months, cartilaginous repair was observed with a low occurrence of fibrocartilage at the medial condyle. Osteochondral repair was promoted and host cartilage degeneration was arrested as shown by the superior Glycosaminoglycan (GAG) maintenance. This positive morphological outcome was supported by a higher relative Young's modulus which indicated functional cartilage restoration. Bone in growth and remodeling occurred in all groups with a higher degree of mineralization in the experimental group. Tissue repair was compromised in the absence of the implanted cells or the resurfacing membrane. Moreover healing was inferior at the patellar groove as compared to the medial condyle and this was attributed to the native biomechanical features.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A membrane filtration plant using suitable micro or ultra-filtration membranes has the potential to significantly increase pan stage capacity and improve sugar quality. Previous investigations by SRI and others have shown that membranes will remove polysaccharides, turbidity and colloidal impurities and result in lower viscosity syrups and molasses. However, the conclusion from those investigations was that membrane filtration was not economically viable. A comprehensive assessment of current generation membrane technology was undertaken by SRI. With the aid of two pilot plants provided by Applexion and Koch Membrane Systems, extensive trials were conducted at an Australian factory using clarified juice at 80–98°C as feed to each pilot plant. Conditions were varied during the trials to examine the effect of a range of operating parameters on the filtering characteristics of each of the membranes. These parameters included feed temperature and pressure, flow velocity, soluble solids and impurity concentrations. The data were then combined to develop models to predict the filtration rate (or flux) that could be expected for nominated operating conditions. The models demonstrated very good agreement with the data collected during the trials. The trials also identified those membranes that provided the highest flux levels per unit area of membrane surface for a nominated set of conditions. Cleaning procedures were developed that ensured the water flux level was recovered following a clean-in-place process. Bulk samples of clarified juice and membrane filtered juice from each pilot were evaporated to syrup to quantify the gain in pan stage productivity that results from the removal of high molecular weight impurities by membrane filtration. The results are in general agreement with those published by other research groups.