36 resultados para nanocellulose
Resumo:
Due to remarkable physical properties, special surface chemistry and excellent biological properties, as low toxicity, biocompatibility and biodegradability, nanocellulose has gained much attention for its use as biomedical material, applied in medical implants, tissue engineering, drug delivery, wound-healing, cardiovascular applications, among others. This paper presents a review on nanocellulose applied in biomedical area.
Resumo:
[Exert] Since the discovery that polyacetylene could be doped to the metallic state more than 3 decades ago, an ever-growing body of a multidisciplinary approach to material design, synthesis, and system integration has been evidenced. The present chapter will primarily review the emerging field of intrinsically conducting polymer and conductive polymer blends, with polyaniline and polypyrrole as the major representatives of conducting polymers. This survey will also address some of the potential areas for applications of such conductive polymer blends. Also, current results concerning the chemical polymerization of conducting polymers on bacterial nanocellulose (BNC) will be presented, including brief remarks on the rationale for the use of conductive BNC blends. This will be followed by a discussion on their properties and potential applications (...).
Resumo:
This work studied the physical immobilization of a commercial laccase on bacterial nanocellulose (BNC) aiming to identify the laccase antibacterial properties suitable for wound dressings. Physico-chemical analysis demonstrates that the BNC structure is manly formed by pure crystalline I cellulose. The pH optimum and activation energy of free laccase depends on the substrate employed corresponding to pH 6, 7, 3 and 57, 22, 48 kJ mol1 for 2,6-dimethylphenol (DMP), catechol and 2,2 -azino-bis-(3-ethylbenzothiazoline-6-sulfonic acid) (ABTS), respectively. The Michaelis-Menten constant (Km) value for the immobilized laccase (0.77 mM) was found to be almost double of that of the free enzyme (0.42 mM). However, the specific activities of immobilized and free laccase are similar suggesting that the cage-like structure of BNC allows entrapped laccase to maintain some flexibility and favour substrate accessibility. The results clearly show the antimicrobial effect of laccase in Gram-positive (92%) and Gram-negative (26%) bacteria and cytotoxicity acceptable for wound dressing applications.
Resumo:
Steam explosion process is employed for the successful extraction of cellulose nanofibrils from pineapple leaf fibres for the first time. Steam coupled acid treatment on the pineapple leaf fibres is found to be effective in the depolymerization and defibrillation of the fibre to produce nanofibrils of these fibres. The chemical constituents of the different stages of pineapple fibres undergoing treatment were analyzed according to the ASTM standards. The crystallinity of the fibres is examined from the XRD analysis. Characterization of the fibres by SEM. AFM and TEM supports the evidence for the successful isolation of nanofibrils from pineapple leaf. The developed nanocellulose promises to be a very versatile material having the wide range of biomedical applications and biotechnological applications, such as tissue engineering, drug delivery, wound dressings and medical implants. (C) 2010 Elsevier Ltd. All rights reserved.
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Bacterial cellulose (BC) has established to be a remarkably versatile biomaterial and can be used in wide variety of applied scientific endeavours, especially for medical devices. In fact, biomedical devices recently have gained a significant amount of attention because of an increased interest in tissue-engineered products for both wound care and the regeneration of damaged or diseased organs. Due to its unique nanostructure and properties, microbial cellulose is a natural candidate for numerous medical and tissue-engineered applications. Hydrophilic bacterial cellulose fibers of an average diameter of 50 nm are produced by the bacterium Acetobacter xylinum, using a fermentation process. The microbial cellulose fiber has a high degree of crystallinity. Using direct nanomechanical measurement, determined that these fibers are very strong and when used in combination with other biocompatible materials, produce nanocomposites particularly suitable for use in human and veterinary medicine. Moreover, the nanostructure and morphological similarities with collagen make BC attractive for cell immobilization and cell support. The architecture of BC materials can be engineered over length scales ranging from nano to macro by controlling the biofabrication process. The chapter describes the fundamentals, purification and morphological investigation of bacterial cellulose. This chapter deals with the modification of microbial cellulose and how to increase the compatibility between cellulosic surfaces and a variety of plastic materials. Furthermore, provides deep knowledge of fascinating current and future applications of bacterial cellulose and their nanocomposites especially in the medical field, materials with properties closely mimic that of biological organs and tissues were described. © Springer-Verlag Berlin Heidelberg 2013.
Resumo:
In recent years, environmental concerns and the expected shortage in the fossil reserves have increased further development of biomaterials. Among them, poly(lactide) PLA possess some potential properties such as good ability process, excellent tensile strength and stiffness equivalent to some commercial petroleum-based polymers (PP, PS, PET, etc.). This biobased polymer is also biodegradable and biocompatible However, one great disadvantage of commercial PLA is slow crystallization rate, which restricts its use in many fields. Using of nanofillers is viewed as an efficient strategy to overcome this problem. In this thesis, the effect of bionanofillers in neat PLA and in blends of poly (L-lactide)(PLA)/poly(ε-Caprolactone) (PCL) has been investigated. The used nanofillers are: poly(L-lactide-co-ε-caprolactone) and poly(L-lactide-b-ε-caprolactone) grafted on cellulose nanowhiskers and neat cellulose nanowhiskers (CNW). The grafting reaction of poly(L-lactide-co-caprolactone) and poly (L-lactide-b-caprolactone) on the nanocellulose has been performed by the grafting from technique. In this way the polymerization reaction it is directly initiated on the substrate surface. The condition of the reaction were chosen after a temperature and solvent screening. By non-isothermal an isothermal DSC analysis the effect of bionanofillers on PLA and 80/20 PLA/PCL was evaluated. Non-isothermal DSC scans show a nucleating effect of the bionanofillers on PLA. This effect is detectable during PLA crystallization from the glassy state. Cold crystallization temperature is reduced upon the addition of the poly(L-lactide-b-caprolactone) grafted on cellulose nanowhiskers that is most performing bionanofiller in acting as a nucleating agent. On the other hand, DSC isothermal analysis on the overall crystallization rate indicate that cellulose nanowhiskers are best nucleating agents during isothermal crystallization from the melt state. In conclusion, nanofillers have different behavior depending on the processing conditions. However, the efficiency of our nanofillers as nucleating agent was clearly demonstrated in both isothermal as in non-isothermal condition.
Resumo:
The study focused on the analysis of the state of the art of active packaging and on the development of an innovative active packaging system for food application based on the use of nanocellulose matrix embedded with essential oils. The solubility and diffusivity of thyme, cinnamon and oregano essential oils in three nanocellulose films, endowed with different carboxymethylation degree, were analysed. The antimicrobial and antioxidant activity of those films was also analyzed. Firstly, the activity against model pathogenic bacteria was tested and the minimum inhibitory concentration of each oil was determined (0.37 – 0.68 mg/mg of matrix). This initial validation was then followed by experimental settings aimed at testing the system directly on clamshell type packed raspberries. It was observed that thyme and oregano essential oils were more effective in maintaining firmness and reduce weight loss than cinnamon essential oil or controls, through 12 days storage at 1ºC. From the results obtained, it is possible to conclude that the dispersion of thyme and oregano essential oils in nanocellulose matrix is a promising technology to improve shelf-life of raspberries or other fresh fruits.
Resumo:
Nanotechnology plays a central role in ‘tailoring’ materials’ properties and thus improving its performances for a wide range of applications. Coupling nature nano-objects with nanotechnology results in materials with enhanced functionalities. The main objective of this master thesis was the synthesis of nanocrystalline cellulose (NCCs) and its further incorporation in a cellulosic matrix, in order to produce a stimuli-responsive material to moisture. The induced behaviour (bending/unbending) of the samples was deeply investigated, in order to determine relationships between structure/properties. Using microcrystalline cellulose as a starting material, acid hydrolysis was performed and the NCC was obtained. Anisotropic aqueous solutions of HPC and NCC were prepared and films with thicknesses ranging from 22μm to 61μm were achieved, by using a shear casting technique. Microscopic and spectroscopic techniques as well as mechanical and rheological essays were used to characterize the transparent and flexible films produced. Upon the application of a stimulus (moisture), the bending/unbending response times were measured. The use of NCC allowed obtaining films with response times in the order of 6 seconds for the bending and 5 seconds for the unbending, improving the results previously reported. These promising results open new horizons for building up improved soft steam engines.
Resumo:
The unique properties of bacterial nanocellulose (BNC) provide the basis for a wide range of applications in human and veterinary medicine, odontology, pharmaceuticals, acoustic and filter membranes, biotechnological devices, and in the food and paper industry. In this chapter, an overview of surface modifications of bacterial cellulose is presented. Depending on the envisaged applications, chemical modifications, incorporation of bioactive molecules, modification of the porosity, crystallinity, and biodegradability may be obtained, further enlarging the potential of BNC.
Resumo:
Composites strengthened with nanocellulose have been developed with the aim of improving mechanical, barrier, and thermal properties of materials. This improvement is primarily due to the nanometric size and the high crystallinity of the incorporated cellulose. Cassava starch films plasticized with glycerol and incorporated with nanocellulose from coconut fibers were developed in this study. The effect of this incorporation was studied with respect to the water activity, solubility, mechanical properties, thermal analysis, and biodegradability. The study demonstrated that the film properties can be significantly altered through the incorporation of small concentrations of nanocellulose.
Resumo:
The objectives of this work were to investigate the microstructure, crystallinity and thermal stability of nanofibrillated cellulose obtained from oat hulls using bleaching and acid hydrolysis at a mild temperature (45 ºC) followed by ultrasonication. The oat hulls were bleached with peracetic acid, and after bleaching, the compact structure around the cellulosic fibers was removed, and the bundles became individualized. The extraction time (30 or 60 min) did not affect the properties of the nanofibrillated cellulose, which presented a higher crystallinity index and thermal stability than the raw material (oat hulls). The nanocellulose formed interconnected webs of tiny fibers with diameters of 70-100 nm and lengths of several micrometers, producing nanofibers with a relatively high aspect ratio, thus indicating that these materials are suitable for polymer reinforcement.
Resumo:
Nanocellulose has much potential for enhancing the tensile strength of paper but it slows down significantly drainage, restricting its use in industrial scale. Main objective of the work was to find ways to improve the dewatering of nanocellulose-containing papers. The effects of cationic potato starch, microparticle system and filler addition on dewatering and such key properties as formation, tensile strength and air permeance of manufactured paper were studied. Test points had 0, 4 or 8 % CNF and 0, 15 or 30 % PCC content. Based on earlier studies, 25 mg/g starch dosage was added to some test points. Modern microparticle system, consisted of cationic polyacrylamide and amorphous silica, was used in few test points. Dosages for both components were 0.3 and 0.6 mg/g, following the recommendations of the supplier. Also, the influences of CNF and filler on drying behaviour after different stages (drainage, wet pressing and cylinder drying) were estimated. Following trends were observed. Starch does not have unambiguous influence on dewatering. In some cases, it improved drainage slightly but effects on the properties of end product were discovered small. Filler quickened dewatering but large proportions were noticed to be detrimental for the drainage, air permeance and tensile strength. Microparticle system improved drainage notably, especially if CNF dosage was high. In addition, microparticle system increased tensile strength and decreased air permeance. However, its effects on formation were detrimental. Dewatering of nanocellulose-containing furnishes is treatable up to a certain point. In the end, such drainage times that were measured from test points which consisted only of pure kraft pulps are awkward to reach.
Resumo:
Puumuovikomposiittien valmistuksessa yhdistetään kaksi toisistaan eroavaa materiaalia jolloin saadaan aikaan materiaalien ominaisuuksien ainutlaatuinen yhdistelmä. Polymeerimateriaaleina käytetään pääasiassa erilaisia kestomuoveja. Kuitumateriaaleina voidaan käyttää puujauhetta, sahanpurua, paperin- ja kartongin valmistuksessa käytettävää sellua, nanoselluloosaa tai muita puukuitumateriaaleja. Polaarisen puukuidun ja polaarittoman muovimateriaalin välinen materiaalien rajapinnan adheesio on yleensä riittämätöntä, mikä vaikuttaa lopputuotteen ominaisuuksien heikkenemiseen. Kyseinen ongelma on pyritty ratkaisemaan käyttämällä erilaisia kytkentäaineita. Tässä työssä keskitytään käsittelemään erilaisia puumuovikomposiittien kytkentäaineita, niiden toimintaa sekä vaikutuksia lopputuotteeseen. Lisäksi työssä esitellään myös puumuovikomposiittien valmistusmateriaaleja ja valmistusprosesseja.
Resumo:
In recent decades, industrial activity growth and increasing water usage worldwide have led to the release of various pollutants, such as toxic heavy metals and nutrients, into the aquatic environment. Modified nanocellulose and microcellulose-based adsorption materials have the potential to remove these contaminants from aqueous solutions. The present research consisted of the preparation of five different nano/microcellulose-based adsorbents, their characterization, the study of adsorption kinetics and isotherms, the determination of adsorption mechanisms, and an evaluation of adsorbents’ regeneration properties. The same well known reactions and modification methods that were used for modifying conventional cellulose also worked for microfibrillated cellulose (MFC). The use of succinic anhydride modified mercerized nanocellulose, and aminosilane and hydroxyapatite modified nanostructured MFC for the removal of heavy metals from aqueous solutions exhibited promising results. Aminosilane, epoxy and hydroxyapatite modified MFC could be used as a promising alternative for H2S removal from aqueous solutions. In addition, new knowledge about the adsorption properties of carbonated hydroxyapatite modified MFC as multifunctional adsorbent for the removal of both cations and anions ions from water was obtained. The maghemite nanoparticles (Fe3O4) modified MFC was found to be a highly promising adsorbent for the removal of As(V) from aqueous solutions due to its magnetic properties, high surface area, and high adsorption capacity . The maximum removal efficiencies of each adsorbent were studied in batch mode. The results of adsorption kinetics indicated very fast removal rates for all the studied pollutants. Modeling of adsorption isotherms and adsorption kinetics using various theoretical models provided information about the adsorbent’s surface properties and the adsorption mechanisms. This knowledge is important for instance, in designing water treatment units/plants. Furthermore, the correspondence between the theory behind the model and properties of the adsorbent as well as adsorption mechanisms were also discussed. On the whole, both the experimental results and theoretical considerations supported the potential applicability of the studied nano/microcellulose-based adsorbents in water treatment applications.