936 resultados para naize Tissue culture


Relevância:

100.00% 100.00%

Publicador:

Resumo:

The effects of medical grade polycaprolactone–tricalcium phosphate (mPCL–TCP) (80:20) scaffolds on primary human alveolar osteoblasts (AOs) were compared with standard tissue-culture plates. Of the seeded AOs, 70% adhered to and proliferated on the scaffold surface and within open and interconnected pores; they formed multi-layered sheets and collagen fibers with uniform distribution within 28 days. Elevation of alkaline phosphatase activity occurred in scaffold–cell constructs independent of osteogenic induction. AO proliferation rate increased and significant decrease in calcium concentration of the medium for both scaffolds and plates under induction conditions were seen. mPCL–TCP scaffolds significantly influenced the AO expression pattern of osterix and osteocalcin (OCN). Osteogenic induction down-regulated OCN at both RNA and protein level on scaffolds (3D) by day 7, and up-regulated OCN in cell-culture plates (2D) by day 14, but OCN levels on scaffolds were higher than on cell-culture plates. Immunocytochemical signals for type I collagen, osteopontin and osteocalcin were detected at the outer parts of scaffold–cell constructs. More mineral nodules were found in induced than in non-induced constructs. Only induced 2D cultures showed nodule formation. mPCL–TCP scaffolds appear to stimulate osteogenesis in vitro by activating a cellular response in AO's to form mineralized tissue. There is a fundamental difference between culturing AOs on 2D and 3D environments that should be considered when studying osteogenesis in vitro.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Weak cell-surface adhesion of cell lines to tissue culture surfaces is a common problem and presents technical limitations to the design of experiments. To overcome this problem, various surface coating protocols have been developed. However, a comparative and precise real-time measurement of their impact on cell behavior has not been conducted. The prostate cancer cell line LNCaP, derived from a patient lymph node metastasis, is a commonly used model system in prostate cancer research. However, the cells’ characteristically weak attachment to the surface of tissue culture vessels and cover slips has impeded their manipulation and analysis and use in high throughput screening. To improve the adherence of LNCaP cells to the culture surface, we compared different coating reagents (poly-L-lysine, poly-L-ornithine, collagen type IV, fibronectin, and laminin) and culturing conditions and analyzed their impact on cell proliferation, adhesion, morphology, mobility and gene expression using real-time technologies. The results showed that fibronectin, poly-L-lysine and poly-L-ornithine improved LNCaP cells adherence and provoked cell morphology alterations, such as increase of nuclear and cellular area. These coating reagents also induced a higher expression of F-actin and reduced cell mobility. In contrast, laminin and collagen type IV did not improve adherence but promoted cell aggregation and affected cell morphology. Cells cultured in the presence of laminin displayed higher mobility than control cells. All the coating conditions significantly affected cell viability; however, they did not affect the expression of androgen receptor-regulated genes. Our comparative findings provide important insight for the selection of the ideal coating reagent and culture conditions for the cancer cell lines with respect to their effect on proliferation rate, attachment, morphology, migration, transcriptional response and cellular cytoskeleton arrangement.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Axillary shoot proliferation was obtained using explants of Eucalyptus grandis L. juvenile and mature stages on a defined medium. Murashige and Skoog medium (MS) supplemented with benzyladenine (BA), naphthalene acetic acid (NAA) and additional thiamine. Excised shoots were induced to root on a sequence of three media: (1) White's medium containing indoleacetic acid (IAA), NAA and indole butyric acid; (IBA), (2) half-strength MS medium with charcoal and (3) half-strength MS liquid medium. The two types of explants differed in rooting response, with juvenile-derived shoots giving 60% rooting and adult-derived ones only 35%. Thus, the factors limiting cloning of selected trees in vitro are determined to be those controlling rooting of shoots in E. grandis.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Two reliable small-plant bioassays were developed using tissue-cultured banana, resulting in consistent symptom expression and infection by Fusarium oxysporum f. sp. cubense (Foc). One bioassay was based on providing a constant watertable within a closed pot and the second used free-draining pots. Culture medium for spore generation influenced infectivity of Foc. Inoculation of potted banana by drenching potting mix with a conidial suspension, consisting mostly of microconidia, few macroconidia and no chlamydospores, generated from one-quarter-strength potato dextrose agar + streptomycin sulfate, resulted in inconsistent infection. When a conidial suspension that consisted of all three spore types, microconidia, macroconidia and chlamydospores, prepared from spores generated on carnation leaf agar was used, all plants became infected, indicating that the spore type present in conidial suspensions may contribute to inconsistency of infection. Inconsistency of infection was not due to loss of virulence of the pathogen in culture. Millet grain precolonised by Foc as a source of inoculum resulted in consistent infection between replicate plants. Sorghum was not a suitable grain for preparation of inoculum as it was observed to discolour roots and has the potential to stunt root growth, possibly due to the release of phytotoxins. For the modified closed-pot system, a pasteurised potting mix consisting of equal parts of bedding sand, perlite and vermiculite plus 1 g/L Triabon slow release fertiliser was suitable for plant growth and promoted capillary movement of water through the potting mix profile. A suitable potting mix for the free-draining pot system was also developed.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Multiple shoots were induced from nodal segments of five year old trees of Eucalyptus grandis L. on solid medium containing Murashige and Skoog's (MS) Basal medium supplemented with additional thiamine, BAP and NAA. Rooting could be achieved from shoot culture on half strength MS salts or white's medium supplemented with low auxins like IAA, IBA and NAA.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Application and development of activities based on in vitro technologies delivering research, industry development and biosecurity activities to sustain and improve the Australian banana industry.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Calendula officinalis is grown widely as an ornamental plant across Europe. It belongs to the large. Asteraceae family. In this study, the aim was to explore the possibilities to use Calendula officinalis as a new model organism for flower development and secondary mechanism studies in Asteraceae. Tissue culture of Calendula officinalis was established using nine different cultivars. Murashige & Skoog (MS) medium with four different combinations of plant growth regulators were tested. Of all these combinations, the medium containing 1mg/l BAP, 0.1 mg/l IAA, and 1mg/l Zeatin achieved highest frequency of adventitious shoot regeneration from hypocotyl and cotyledon explants. Virus-induced gene silencing is a recent developed genetic tool for charactering the gene functions in plants, and extends the range of host plants that are not accessible for Agrobacterium transformation. Here, tobacco rattle virus (TRV)-based VIGS technique was tested in calendula (cv. Single Orange). We used TRV carrying Gerbera hybrid phytoene desaturase (PDS) gene fragment to induce PDS silencing in calendula. Vacuum infiltration and syringe infiltration methods both resulted in photo-bleaching phenotypes in leaves, bracts and petals. Loss-of-function phenotypes occurred on calendula 13 days post-infiltration. In conclusion, the data indicates that calendula explants can be regenerated through tissue culture which is a prerequisite for development of stable transformation methods. However, further optimization is still needed to improve the frequency. In addition, VIGS was applied to silence PDS marker gene expression indicating that this method has potential for gene functional studies in future.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Replication of the ~30-kb plus-strand RNA genome of coronaviruses and synthesis of an extensive set of subgenome-length RNAs are mediated by the replicase-transcriptase, a membrane-bound protein complex containing several cellular proteins and up to 16 viral nonstructural proteins (nsps) with multiple enzymatic activities, including protease, polymerase, helicase, methyltransferase, and RNase activities. To get further insight into the replicase gene-encoded functions, we characterized the coronavirus X domain, which is part of nsp3 and has been predicted to be an ADP-ribose-1"-monophosphate (Appr-1"-p) processing enzyme. Bacterially expressed forms of human coronavirus 229E (HCoV-229E) and severe acute respiratory syndrome-coronavirus X domains were shown to dephosphorylate Appr-1"-p, a side product of cellular tRNA splicing, to ADP-ribose in a highly specific manner. The enzyme had no detectable activity on several other nucleoside phosphates. Guided by the crystal structure of AF1521, an X domain homolog from Archaeoglobus fulgidus, potential active-site residues of the HCoV-229E X domain were targeted by site-directed mutagenesis. The data suggest that the HCoV-229E replicase polyprotein residues, Asn 1302, Asn 1305, His 1310, Gly 1312, and Gly 1313, are part of the enzyme's active site. Characterization of an Appr-1"-pase-deficient HCoV-229E mutant revealed no significant effects on viral RNA synthesis and virus titer, and no reversion to the wild-type sequence was observed when the mutant virus was passaged in cell culture. The apparent dispensability of the conserved X domain activity in vitro indicates that coronavirus replicase polyproteins have evolved to include nonessential functions. The biological significance of the novel enzymatic activity in vivo remains to be investigated.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Plants were regenerated from callus induced from leaf disc explants of a tomato F, hybrid heterozygous for three marker loci (a), without anthocyanin (aw), and hairless (hl). Regenerants were studied for somaclonal variation at the phenotypic level by scoring for variation in the marker loci, and at the DNA level by probing geomic DNA blots with a chlorophyll a/b binding protein (Cab-3C) cDNA sequence. While no variation was observed at the phenotypic level in over 950 somaclones studied, DNA polymorphism for the Cab locus could be detected in two out of 17 somaclones tested. Tissue culture induced variation at the phenotypic level for specific loci is very low (less than 0.001 for a, awor hl) but DNA sequence changes are induced at much greater frequency (- 0.1 for a multicopy gene family such as Cab).

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The study deals with the generation of variability for salt tolerance in rice using tissue culture techniques. Rice is the staple food of more than half of the world’s population. The management of drought, salinity and acidity in soils are all energy intensive agricultural practices. The Genetic variability is the basis of crop improvement. Somaclonal and androclonal variation can be effectively used for this purpose. In the present study, eight isozymes were studied and esterase and isocitric dehydrogenase was found to have varietal specific, developmental stage specific and stress specific banding pattern in rice. Under salt stress thickness of bands and enzyme activity showed changes. Pokkali, a moderately salt tolerant variety, had a specific band 7, which was present only in this variety and showed slight changes under stress. This band was faint in tillering and flowering stage .Based on the results obtained in the present study it is suggested that esterase could possibly be used as an isozyme marker for salt tolerance in rice. Varietal differences and stage specific variations could be detected using esterase and isocitric dehydrogenase . Moreover somaclonal and androclonal variation could be effectively detected using isozyme markers.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

P rosea syn. Indica belong to the family of plumbaginaceae, is an important medicinal plant, cultivated widely in India. The roots of these plant are generally used for medicinal purposes mainly as diuretic, germicidal, vessicant, and abortifacient. It is also used for anaemia, diarrhea, leprosy and common wart. The bark of the root contains orange yellow pigment named plumbagin, a crystalline substance, belongs to the class of naphthoquinone. Its chemical structure is 5-hydroxy 2-methyl 1,4naphthoquinone. Apart from P rosea, P zeylanica, P europea, Drosera and Drosophyllum also contains plumbagin. The most exploited source of plumbagin is, of course, P. rosea roots. The roots contain O.9mg/ g D.Wt. of plumbagin in the roots. These plants grow very slowly and the roots suitable for plumbagin extraction can be obtained only after several years of growth. The productivity of the plant is also rather poor. The focus of the present study was to develop alternative strategies to obtain plumbagin. The tissue culture of P rosea for micropropagation has been studied

Relevância:

100.00% 100.00%

Publicador:

Resumo:

We have compared properties of roots from different lines (genotypes) of tobacco raised either in tissue culture or grown from seed. The different lines included unmodified plants and plants modified to express reduced activity of the enzyme cinnamoyl-CoA reductase, which has a pivotal role in lignin biosynthesis. The size and structure of the rhizosphere microbial community, characterized by adenosine triphosphate and phospholipid fatty acid analyses, were related to root chemistry (specifically the soluble carbohydrate concentration) and decomposition rate of the roots. The root material from unmodified plants decomposed faster following tissue culture compared with seed culture, and the faster decomposing material had significantly higher soluble carbohydrate concentrations. These observations are linked to the larger microbial biomass and greater diversity of the rhizosphere communities of tissue culture propagated plants.