53 resultados para n-Decane Hydroisomerization
Resumo:
The activity and selectivity of bi-functional carbon-supported platinum catalysts for the hydroisomerization of n-alkanes have been studied. The influence of the properties of the carbon support on the performance of the catalysts were investigated by incorporating the metallic function on a series of carbons with varied porosity (microporous: GL-50 from Norit, and mesoporous: CMK-3) and surface chemistry (modified by wet oxidation). The characterization results achieved with H-2 chemisorption and TEM showed differences in surface metal concentrations and metal-support interactions depending on the support composition. The highest metal dispersion was achieved after oxidation of the carbon matrix in concentrated nitric acid, suggesting that the presence of surface functional sites distributed in inner and outer surface favors a homogeneous metal distribution. On the other hand, the higher hydrogenating activity of the catalysts prepared with the mesoporous carbon pointed out that a fast molecular traffic inside the pores plays an important role in the catalysts performance. For n-decane hydroisomerization of long chain n-alkanes, higher activities were obtained for the catalysts with an optimized acidity and metal dispersion along with adequate porosity, pointing out the importance of the support properties in the performance of the catalysts.
Resumo:
The present work deals with preliminary studies concerning a new synthesis approach to prepare SAPO materials with AEL structure and evaluate their catalytic behavior in the hydroisomerization of long paraffins. The new SAPO-11 catalysts were synthesized with the help of a small amine (methylamine, MA) added during the preparation of the initial gel. As MA incorporates into the structure of the final materials, it contributes, together with DPA (dipropylamine), to an increase in Si incorporation as isolated species, which results in Bronsted acid sites. Thus, this new and original synthesis strategy allows to obtain materials with enhanced Bronsted acidity when compared with free MA materials. The catalysts were tested in n-decane hydroisomerization (n-decane was used as a model molecule) and confirmed the effect of MA on the acidic properties of the catalysts. The samples synthesized with MA present a higher number of acid sites that increase the catalytic conversion but have a negative effect in the isomerization selectivity, i.e. a more significant amount of cracking products is formed.
Resumo:
Hierarchical SAPO-11 was synthesized using a commercial Merck carbon as template. Oxidant acid treatments were performed on the carbon matrix in order to investigate its influence on the properties of SAPO-11. Structural, textural and acidic properties of the different materials were evaluated by XRD, SEM, N-2 adsorption, pyridine adsorption followed by IR spectroscopy and thermal analyses. The catalytic behavior of the materials (with 0.5 wt.% Pt, introduced by mechanic mixture with Pt/Al2O3), were studied in the hydroisomerization of n-decane. The hierarchical samples showed higher yields in monobranched isomers than typical microporous SAPO-11, as a direct consequence of the modification on both porosity and acidity, the later one being the most predominant. (C) 2014 Elsevier B.V. All rights reserved.
Resumo:
β-Casein and sodium caseinate stabilized emulsions were produced and had their rheological properties investigated as a function of the nature of the oil phase, ionic strength and pH. Oil phases of distinct structural characteristics, namely decane and vegetable oil of high triglyceride content, were assayed. The former was much more effectively emulsified than the latter. Effects of pH and ionic strength were minor. Emulsion rheological properties were strikingly distinct in each case, with viscoelastic, solid-like structures being formed with decane (G' >> G"), differently from what is observed for samples containing triglycerides as the oil phase, in which viscoelasticity was not even apparent. The relevance of the spatial features of the oil phase structure in the development of the emulsion viscoelastic character is discussed. Factors responding for the system distinct behaviour possibly reside at the emulsion droplet interface, unapproachable by optical microscopy, rather than on aspects related to particle size or shape.
Resumo:
Emulsões estabilizadas por 'beta'-caseína e sódio caseinato tiveram suas propriedades reológicas investigadas em função da natureza da fase oleosa, da força iônica e do pH. Fases oleosas de características estruturais distintas, a saber, decano e óleos vegetais de alto teor triglicerídico, foram ensaiadas. A emulsificação dos sistemas contendo decano foi significativamente mais efetiva do que aquela das amostras contendo triglicérides. Efeitos de pH e força iônica mostraram-se relativamente pouco importantes sobre a capacidade emulsificante da proteína. As propriedades reológicas foram marcadamente distintas em cada caso, com estruturas de caráter sólido (G' G") sendo produzidas com decano, diferentemente do que foi observado para amostras contendo triglicérides, nas quais a viscoelasticidade não foi nem mesmo aparente. A relevância de aspectos espaciais da estrutura da fase oleosa no desenvolvimento do caráter viscoelástico é discutida. Propõe-se que os fatores responsáveis pelo comportamento distinto observado residam possivelmente na interface gotícula/meio dispersante, inacessível por microscopia óptica, e guardam pouca relação com tamanho ou forma da gotícula.
Resumo:
The title pendent-arm macrocyclic hexaamine ligand binds stereospecifically in a hexadentate manner, and we report here its isomorphous Ni-II and Zn-II complexes (both as perchlorate salts), namely (cis-6,13-dimethyl-1,4,8,11-tetraazacyclotetradecane-6,13-diamine-kappa(6)N)nickel(II) diperchlorate, [Ni(C12H30N6)](ClO4)(2), and (cis-6,13-dimethyl-1,4,8,11-tetraazacyclotetradecane-6,13-diamine-kappa(6)N)zinc(II) diperchlorate, [Zn(C-12 H30N6)](ClO4)(2). Distortion of the N-M-N valence angles from their ideal octahedral values becomes more pronounced with increasing metal-ion size and the present results are compared with other structures of this ligand.
Resumo:
Bifunctional Pt-HMOR catalysts were prepared by incipient wetness impregnation of various desilicated MOR obtained by alkaline treatment using NaOH concentrations ranging from 0.1 to 0.5 M. The zeolite structural changes upon modification were investigated by several techniques including powder X-ray diffraction,Al-27 and Si-29 MAS-NMR spectroscopy, N-2 adsorption, pyridine adsorption followed by infrared spectroscopy and the catalytic model reaction of m-xylene transformation. For low alkaline concentration the zeolite acidity is preserved, along with a slight increase of the volume correspondent to the larger micropores due to the removal of extra-framework debris already existent at the parent zeolite. At higher NaOH concentrations there is a significant loss of crystalinity and acidity as well as the formation of mesoporosity. The characterization of the metal function shows similar patterns for Pt-HMOR and Pt-M/0.1 samples, with Pt particles located mainly inside the inner porosity. In contrast, large Pt particles become visible at the intercrystalline mesoporosity of MOR crystals developed during the desilication treatments at severe alkaline conditions. The catalytic results obtained for n-hexane hydroisomerization showed an improved selectivity for dibranched over monobranched isomers for Pt-M/0.1 sample, likely due to the preservation of the support acidity and the slight enlargement of the micropores. This work is a new example in which the mesoporous development does not improve the catalytic efficiency of the zeolites, whereas mild alkaline desilication might be considered as an effective solution to produce customized catalysts with enhanced performance for a given application. (C) 2014 Elsevier B.V. All rights reserved.
Resumo:
Herein, we have investigated the solubilization of decane into a novel nonionic gemini surfactant, myristoyl-end capped Jeffamine, synthesized from a polyoxyalkyleneamine (ED900). Starting from this system, porous silica materials have been prepared. Performing the hydrothermal treatment at low temperature, a slight increase of the mesopore diameter is observed in the presence of decane. Increasing the temperature of the hydrothermal treatment, no swelling effect of decane is detected. By contrast, the pore diameter decreases but better mesopore homogeneity and a larger wall thickness are obtained. At high decane concentration the new myristoyl-end capped Jeffamine/decane/water system forms oil-in-water emulsions, which are used as template for the formation of hierarchical porous silica materials.
Resumo:
[EN]A thermodynamic study is carried out on binary systems composed of propyl ethanoate with six alkanes, from pentane to decane. Vapor pressures of the ester and the isobaric vapor−liquid equilibria of these six mixtures were measured at 101.32 kPa in a small-capacity ebulliometer and also the mixing properties yE = vE,hE over a range of temperatures and at atmospheric pressure. Adequate correlations are drawn for the surfaces yE = yE(x,T) with an interpretation on the behavior of the mixtures and also using cp E data from literature.
Resumo:
We investigate here the diffusion of n-decane in nanoporous MCM-41 silicas with pore diameters between 3.0 and 4.3 nm, and at various temperatures and purge flow rates, by the Zero Length Column method. A complete-time-range analysis of desorption curves is used to derive the diffusion coefficient, and the effect of pore size, purge flow rate and temperature on the diffusion character is systematically studied. The results show that the calculated low-coverage diffusivity values are strongly dependent on temperature but only weakly dependent on pore size. The study reveals that transport is controlled by intracrystalline diffusion and dominated by sorbate-sorbent interaction, with the experimental isosteric heat matching the potential energy of flat-lying n-decane molecules on the surface, determined using a united atom model. The diffusion activation energy and adsorption isosteric heat at zero loading for the different pore size MCM-41 samples vary in a narrow range respectively, and their ratio is essentially constant over the pore size range studied. The study shows that the ZLC method is an effective tool to investigate the diffusion kinetics of hydrocarbons in mesoporous MCM-41 materials. (c) 2005 Elsevier Inc. All rights reserved.
Resumo:
In order to characterize the composition of the main urban air organic compounds in the megacity of Sao Paulo, analysis of samples collected during the winter of 2003 downtown was carried out. The samplings were performed on the roof of a building in the commercial center of São Paulo. Hydrocarbons and carbonyls compounds were collected on August 4, 5 and 6. Comparing to previous data, the concentration of hydrocarbons presented no decrease in the concentration, except for the aldehydes, which decreased when compared to previous data. Among the HCs species analyzed, the highest concentrations observed were those of toluene (7.5 ± 3.4 ppbv), n-decane (3.2 ± 2.0 ppbv), benzene (2.7 ± 1.4 ppbv) and 1,3,5-trimethylbenzene (2.2 ± 1.5 ppbv).
Resumo:
Spiroacetals, cryptic ketodiols showing a hydroxyl group at both sides of a carbonyl whithin reachable distances are very widespread in nature. A group of 30 different structures, not including stereoisomers, represent volatile, less polar constituents of insect secretions. Five different systems were identified: 1,6-dioxaspirol[4.4]nonanes, 1,6-dioxaspiro[4.5]decanes, 1,6-dioxaspiro[4.6]undecanes, 1,7-dioxaspiro[5.5] undecanes, and 1,7-dioxaspiro[5.6]dodecanes. Some spiroacetals are insect pheromones: (2S,5R)-2-ethyl-1,6-dioxaspiro[4.4]nonane, chalcogran, 1, is a key component of the male produced aggregation pheromone of the spruce bark beetle, Pityogenes cha2cographus. In contrast, (5S,7S)-7-methyl-1,6-dioxaspiro[4.5]decane, 2, conophthorin, acts as a repellent or spacer in several bark beetles. Racemic 1,7-diosaspiro[5.5]undecane, olean, 5, is the female produced sex pheromone of the olive fly, Bactrocera (Dacus) oleae. The most widespread spiroacetal is 2,8-dimethyl-1,7-dioxaspiro[5.5]undecane, 8. Tt often forms a mixture of (E,E)- and (E,Z)-isomers, the (E,E)-isomer showing (2S,6R,8S)-configuration. In the solitary bee, Andrena wilkella, it serves as an aggregation pheromone. Present knowledge on structures and distribution of volatile spiroacetals is comprehensively compiled. Stereochemical aspects and mass spectrometric fragmentation patterns are discussed in detail to facilitate identifications of hitherto unknown compounds. Synthetic approaches to spiroacetals are classified and reviewed. Last but not least, facts and speculations on the biosynthesis of volatile spiroacetals are presented.
Resumo:
The bifunctional transformation of n-hexane was carried out over Pt/MCM-22 based catalysts. MCM-22 was synthesized and submitted to ion exchange with rare earth nitrate solutions of La, Nd and Yb, followed by Pt introduction. Three different methods were used to introduce about 1 wt% of Pt in the zeolite: ion exchange, incipient wetness impregnation and mechanical mixture with Pt/Al(2)O(3). The bifunctional catalysts were characterized by transmission electron microscopy and by the model reaction of toluene hydrogenation. These experiments showed that, in the ion exchanged sample, Pt is located both within the inner micropores and on the outer surface, whereas in the impregnated one, the metal is essentially located on the outer surface under the form of large particles. The presence of RE elements increases the hydrogenating activity of Pt/MCM-22 since the location of these species at the vicinity of metal particles causes modification on its electronic properties. Whatever the mode of Pt introduction, a fast initial decrease in conversion is observed for n-hexane transformation, followed by a plateau related to the occurrence of the catalytic transformations at the hemicages located at the outer surface of the crystals. The effect of rare earth elements on the hydrogenating function leads to a lower selectivity in dibranched isomers and increased amounts of light products.
Resumo:
Dissertation to obtain a Master Degree in Biotechnology
Resumo:
Diruthenium tetracarbonyl complexes of the type [Ru2(CO)4(l2-g2-O2CR)2L2] containing a Ru-Ru backbone with four equatorial carbonyl ligands, two carboxylato bridges, and two axial two-electron ligands in a sawhorse-like geometry have been synthesized with porphyrin-derived substituents in the axial ligands [1: R is CH3, L is 5-(4-pyridyl)-10,15,20-triphenyl-21,23H-porphyrin], in the bridging carboxylato ligands [2: RCO2H is 5-(4-carboxyphenyl)-10,15,20-triphenyl-21,23H-porphyrin, L is PPh3; 3: RCO2H is 5-(4-carboxyphenyl)-10,15,20-triphenyl-21,23H-porphyrin, L is 1,3,5-triaza-7-phosphatricyclo [3.3.1.1]decane], or in both positions [4: RCO2H is 5-(4-carboxyphenyl)-10,15,20-triphenyl-21,23H-porphyrin, L is 5-(4-pyridyl)-10,15,20-triphenyl-21,23H-porphyrin]. Compounds 1-3 were assessed on different types of human cancer cells and normal cells. Their uptake by cells was quantified by fluorescence and checked by fluorescence microscopy. These compounds were taken up by human HeLa cervix and A2780 and Ovcar ovarian carcinoma cells but not by normal cells and other cancer cell lines (A549 pulmonary, Me300 melanoma, PC3 and LnCap prostate, KB head and neck, MDAMB231 and MCF7 breast, or HT29 colon cancer cells). The compounds demonstrated no cytotoxicity in the absence of laser irradiation but exhibited good phototoxicities in HeLa and A2780 cells when exposed to laser light at 652 nm, displaying an LD50 between 1.5 and 6.5 J/cm2 in these two cell lines and more than 15 J/cm2 for the others. Thus, these types of porphyric compound present specificity for cancer cell lines of the female reproductive system and not for normal cells; thus being promising new organometallic photosensitizers.