910 resultados para n-3 PUFA


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Red meat from grass-fed animals, compared with concentrate-fed animals, contains increased concentrations of long-chain (LC) n-3 PUPA. However, the effects of red meat consumption from grass-fed animals on consumer blood concentrations of LC n-3 PUFA are unknown. The aim of the present study was to compare the effects on plasma and platelet LC n-3 PUFA status of consuming red meat produced from either grass-fed animals or concentrate-fed animals. A randomised, double-blinded, dietary intervention study was carried out for 4 weeks on healthy subjects who replaced their habitual red meat intake with three portions per week of red meat (beef and lamb) from animals offered a finishing diet of either grass or concentrate (n 20 consumers). Plasma and platelet fatty acid composition, dietary intake, blood pressure, and serum lipids and lipoproteins were analysed at baseline and post-intervention. Dietary intakes of total n-3 PUFA, as well as plasma and platelet concentrations of LC n-3 PUFA, were significantly higher in those subjects who consumed red meat from grass-fed animals compared with those who consumed red meat from concentrate-fed animals (P<0.05). No significant differences in concentrations of serum cholesterol, TAG or blood pressure were observed between groups. Consuming red meat from grass-fed animals compared with concentrate-fed animals as part of the habitual diet can significantly increase consumer plasma and platelet LC n-3 PUFA status. As a result, red meat from grass-fed animals may contribute to dietary intakes of LC n-3 PUFA in populations where red meat is habitually consumed.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Increasing recognition of the importance of the long-chain n-3 PUFA, EPA and DHA, to cardiovascular health, and in the case of DHA to normal neurological development in the fetus and the newborn, has focused greater attention on the dietary supply of these fatty acids. The reason for low intakes of EPA and DHA in most developed countries (0 center dot 1-0 center dot 5hairspg/d) is the low consumption of oily fish, the richest dietary source of these fatty acids. An important question is whether dietary intake of the precursor n-3 fatty acid, alpha-linolenic acid (alpha LNA), can provide sufficient amounts of tissue EPA and DHA by conversion through the n-3 PUFA elongation-desaturation pathway. alpha LNA is present in marked amounts in plant sources, including green leafy vegetables and commonly-consumed oils such as rape-seed and soyabean oils, so that increased intake of this fatty acid would be easier to achieve than via increased fish consumption. However, alpha LNA-feeding studies and stable-isotope studies using alpha LNA, which have addressed the question of bioconversion of alpha LNA to EPA and DHA, have concluded that in adult men conversion to EPA is limited (approximately 8%) and conversion to DHA is extremely low (< 0 center dot 1%). In women fractional conversion to DHA appears to be greater (9%), which may partly be a result of a lower rate of utilisation of alpha LNA for beta-oxidation in women. However, up-regulation of the conversion of EPA to DHA has also been suggested, as a result of the actions of oestrogen on Delta 6-desaturase, and may be of particular importance in maintaining adequate provision of DHA in pregnancy. The effect of oestrogen on DHA concentration in pregnant and lactating women awaits confirmation.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Background: Indian Asians living in Western Countries have an over 50% increased risk of coronary heart disease (CHD) relative to their Caucasians counterparts. The atherogenic lipoprotein phenotype (ALP), which is more prevalent in this ethnic group, may in part explain the increased risk. A low dietary long chain n-3 fatty acid (LC n-3 PUFA) intake and a high dietary n-6 PUFA intake and n-6:n-3 PUFA ratio in Indian Asians have been proposed as contributors to the increased ALP incidence and CHD risk in this subgroup. Aim: To examine the impact of dietary n-6:n-3 PUFA ratio on membrane fatty acid composition, blood lipid levels and markers of insulin sensitivity in Indian Asians living in the UK. Methods: Twenty-nine males were assigned to either a moderate or high n-6:n-3 PUFA (9 or 16) diet for 6 weeks. Fasting blood samples were collected at baseline and 6 weeks for analysis of triglycerides, total-, LDL- and HDL- cholesterol, non-esterified fatty acids, glucose, insulin, markers of insulin sensitivity and C-reactive protein. Results: Group mean saturated fatty acid, MUFA, n-6 PUFA and n-3 PUFA on the moderate and high n-6:n-3 PUFA diets were 26 g/d, 43 g/d, 15 g/d, 2 g/d and 25 g/d, 25 g/d, 28 g/d, 2 g/d respectively. A significantly lower total membrane n-3 PUFA and a trend towards lower EPA and DHA levels were observed following the high n-6:n-3 PUFA diet. However no significant effect of treatment on plasma lipids was evident. There was a trend towards a loss of insulin sensitivity on the high n-6:n-3 PUFA diet, with the increase in fasting insulin (P = 0.04) and HOMA IR [(insulin x glucose)/22.5] (P = 0.02) reaching significance. Conclusion: The results of the current study suggest that, within the context of a western diet, it is unlikely that dietary n-6:n-3 PUFA ratio has any major impact on the levels of LC n-3 PUFA in membrane phospholipids or have any major clinically relevant impact on insulin sensitivity and its associated dyslipidaemia.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Background & aims The consumption of long chain n − 3 polyunsaturated fatty acids (LC n − 3 PUFA) is known to be cardio-protective. Data on the influence of LC n − 3 PUFA on arterial stiffness in the postprandial state is limited. The aim of this study was to investigate the acute effects of a LC n − 3 PUFA-rich meal on measures of arterial stiffness. Methods Twenty-five healthy subjects (12 men, 13 women) received a control and a LC n − 3 PUFA-rich meal on two occasions in a random order. Arterial stiffness was measured at baseline, 30, 60, 90, 120, 180 and 240 min after meal consumption by pulse wave analysis and digital volume pulse to derive an augmentation index and a stiffness index respectively. Blood samples were taken for measurement of lipids, glucose and insulin. Results Consumption of the LC n − 3 PUFA-rich meal had an attenuating effect on augmentation index (P = 0.02) and stiffness index (P = 0.03) compared with the control meal. A significant treatment effect (P = 0.036) was seen for plasma non-esterified fatty acids concentrations. Conclusions These data indicate that acute LC n − 3 PUFA-rich meal consumption can improve postprandial arterial stiffness. This has important implications for the beneficial properties of LC n − 3 PUFA and cardiovascular risk reduction.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

With the wide acceptance of the long-chain (LC) n-3 PUFA EPA and DHA as important nutrients playing a role in the amelioration of certain diseases, efforts to understand factors affecting intakes of these fatty acids along with potential strategies to increase them are vital. Widespread aversion to oil-rich fish, the richest natural source of EPA and DHA, highlights both the highly suboptimal current intakes in males and females across all age-groups and the critical need for an alternative supply of EPA and DHA. Poultry meat is a popular and versatile food eaten in large quantities relative to other meats and is open to increased LC n-3 PUFA content through manipulation of the chicken's diet to modify fatty acid deposition and therefore lipid composition of the edible tissues. It is therefore seen as a favourable prototype food for increasing human dietary supply of LC n-3 PUFA. Enrichment of chicken breast and leg tissue is well established using fish oil or fishmeal, but concerns about sustainability have led to recent consideration of algal biomass as an alternative source of LC n-3 PUFA. Further advances have also been made in the quality of the resulting meat, including achieving acceptable flavour and storage properties as well as understanding the impact of cooking on the retention of fatty acids. Based on these considerations it may be concluded that EPA- and DHA-enriched poultry meat has a very positive potential future in the food chain.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Glucokinase Regulatory Protein (GCKR) plays a central role regulating both hepatic triglyceride and glucose metabolism. Fatty acids are key metabolic regulators, which interact with genetic factors and influence glucose metabolism and other metabolic traits. Omega-3 polyunsaturated fatty acids (n-3 PUFA) have been of considerable interest, due to their potential to reduce metabolic syndrome (MetS) risk. Objective To examine whether genetic variability at the GCKR gene locus was associated with the degree of insulin resistance, plasma concentrations of C-reactive protein (CRP) and n-3 PUFA in MetS subjects. Design Homeostasis model assessment of insulin resistance (HOMA-IR), HOMA-B, plasma concentrations of C-peptide, CRP, fatty acid composition and the GCKR rs1260326-P446L polymorphism, were determined in a cross-sectional analysis of 379 subjects with MetS participating in the LIPGENE dietary cohort. Results Among subjects with n-3 PUFA levels below the population median, carriers of the common C/C genotype had higher plasma concentrations of fasting insulin (P = 0.019), C-peptide (P = 0.004), HOMA-IR (P = 0.008) and CRP (P = 0.032) as compared with subjects carrying the minor T-allele (Leu446). In contrast, homozygous C/C carriers with n-3 PUFA levels above the median showed lower plasma concentrations of fasting insulin, peptide C, HOMA-IR and CRP, as compared with individuals with the T-allele. Conclusions We have demonstrated a significant interaction between the GCKR rs1260326-P446L polymorphism and plasma n-3 PUFA levels modulating insulin resistance and inflammatory markers in MetS subjects. Further studies are needed to confirm this gene-diet interaction in the general population and whether targeted dietary recommendations can prevent MetS in genetically susceptible individuals.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Demand for organic milk is partially driven by consumer perceptions that it is more nutritious. However, there is still considerable uncertainty over whether the use of organic production standards affects milk quality. Here we report results of meta-analyses based on 170 published studies comparing the nutrient content of organic and conventional bovine milk. There were no significant differences in total SFA and MUFA concentrations between organic and conventional milk. However, concentrations of total PUFA and n-3 PUFA were significantly higher in organic milk, by an estimated 7 (95 % CI −1, 15) % and 56 (95 % CI 38, 74) %, respectively. Concentrations of α-linolenic acid (ALA), very long-chain n-3 fatty acids (EPA+DPA+DHA) and conjugated linoleic acid were also significantly higher in organic milk, by an 69 (95 % CI 53, 84) %, 57 (95 % CI 27, 87) % and 41 (95 % CI 14, 68) %, respectively. As there were no significant differences in total n-6 PUFA and linoleic acid (LA) concentrations, the n-6:n-3 and LA:ALA ratios were lower in organic milk, by an estimated 71 (95 % CI −122, −20) % and 93 (95 % CI −116, −70) %. It is concluded that organic bovine milk has a more desirable fatty acid composition than conventional milk. Meta-analyses also showed that organic milk has significantly higher α-tocopherol and Fe, but lower I and Se concentrations. Redundancy analysis of data from a large cross-European milk quality survey indicates that the higher grazing/conserved forage intakes in organic systems were the main reason for milk composition differences.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

O óleo de peixe é rico em ácidos graxos poli-insaturados (AGPI) n-3 e vem sendo apontado como anti-inflamatório associado à melhora de diversas doenças de natureza inflamatória. No presente estudo, objetivou-se avaliar a influência do óleo de peixe sobre a inflamação pulmonar e hiper-reatividade em camundongos ativamente sensibilizados desafiados com ovoalbumina (OVA). Camundongos A/J machos foram alimentados com dieta standard-chow (SC) ou dieta rica em óleo de peixe (Px) durante 8 semanas. Após 4 semanas do início da dieta, cada grupo foi subdividido aleatoriamente para ser desafiado com salina (SC-SAL e PX-SAL) ou ovoalbumina (SC-OVA e PX-OVA). A função pulmonar (resistência e elastância) foi avaliada através de pletismografia invasiva, na condição de aerolização ou não com metacolina 24 horas após o último desafio antigênico. Foi realizado lavado broncoalveolar (LBA) para contagem de leucócitos e quantificação de eotaxina-2. A deposição de muco e de matriz peribronquiolar e o infiltrado de eosinófilos foram quantificados no tecido pulmonar. Foram avaliados interleucina (IL)-13 através de imunohistoquímica e NFκB, GATA-3 e PPARγ, por western-blotting. O desafio com OVA resultou em aumento da infiltração de eosinófilos, elevada produção de citocinas inflamatórias, remodelamento pulmonar, produção de muco e hiper-reatividade das vias aéreas. Detectou-se aumento na expressão dos fatores de transcrição NFκB e GATA-3 nos camundongos do grupo sensibilizado e desafiado com OVA em comparação aos controles. Todas essas alterações foram atenuadas nos camundongos que receberam dieta com óleo de peixe. Expressão elevada de PPARγ foi detectada nos pulmões dos camundongos dos grupos alimentados com óleo de peixe. Em conclusão, nossos resultados mostram que a ingestão de óleo de peixe atenuou as características clássicas do quadro asmático através da modulação da síntese de mediadores inflamatórios, via regulação negativa de NFκB e GATA-3 e regulação positiva de PPARγ. O óleo de peixe parece ser uma terapia alternativa para o controle e tratamento da asma.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

OBJECTIVE:
Patients with type 2 diabetes mellitus (T2DM) are at increased risk of developing cardiovascular disease, largely as a result of defective production of cardioprotective nitric oxide and a concomitant rise in oxidative stress. Dietary interventions that could reverse this trend would be extremely beneficial. Here we investigated whether dietary n-3 polyunsaturated fatty acid (n-3 PUFA) supplementation positively affected platelet nitroso-redox imbalance.
RESEARCH DESIGN AND METHODS:
We randomized hypertensive T2DM patients (T2DM HT; n = 22) and age-and-sex matched hypertensive study participants without diabetes (HT alone; n = 23) in a double-blind, crossover fashion to receive 8 weeks of n-3 PUFAs (1.8 g eicosapentaenoic acid and 1.5 g docosahexaenoic acid) or identical olive oil capsules (placebo), with an intervening 8-week washout period. Platelet nitrite and superoxide were measured and compared before and after treatment; 8-isoprostane was determined by ELISA and subcellular compartmentalization of the NAD(P)H oxidase subunit p47-phox examined by Western blotting.
RESULTS:
The n-3 PUFA supplementation reduced 8-isoprostane and superoxide levels in platelets from T2DM HT, but not HT alone, participants, without effect on nitrite production. This coincided with a significant decrease in p47-phox membrane localization and a similar reduction in superoxide to that achieved with apocynin. At baseline, a subcohort of T2DM HT and HT alone participants showed evidence of nitric oxide synthase (NOS)-derived superoxide production, indicating defective enzymatic activity. This was reversed significantly in T2DM HT participants after treatment, demonstrating improved NOS function.
CONCLUSIONS:
Our finding that n-3 PUFAs diminish platelet superoxide production in T2DM HT patients in vivo suggests a therapeutic role for these agents in reducing the vascular-derived oxidative stress associated with diabetes.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

The very long chain (VLC) n-3 polyunsaturated fatty acids (PUFA), particularly eicosapentaenoic acid (EPA) and docosahexaenoic acid (DHA), are widely recognised to have beneficial effects on human health. However, recommended intakes of VLC n-3 PUFA (450 mg/day) are not being met by the diet in the majority of the population mainly because of low consumption of oil-rich fish. Current mean intake of VLC n-3 PUFA by adults is estimated to be about 282 mg/day with EPA and DHA contributing about 244 mg/day. Furthermore, the fact that only about 27% of adults eat any oil-rich fish (excluding canned tuna) and knowledge of the poor conversion of α-linolenic acid to EPA and DHA in vivo, particularly in men, leads to the need to review current dietary sources of these fatty acids. Animal-derived foods are likely to have an important function in increasing intake and studies have shown that feeding fish oils to animals can increase the EPA and DHA content of the resulting food products. This paper highlights the importance of examining current and projected consumption trends of meat and other animal products when exploring the potential impact of enriched foods by means of altering animal diets. When related to current food consumption data, potential dietary intakes of EPA+DHA from foods derived from animals fed enriched diets are calculated to be about 231 mg/day. If widely consumed, such foods could have a significant impact on progression of conditions such as cardiovascular disease. Consideration is also given to the sources of VLC n-3 PUFA in animal diets, with the sustainability of fish oil being questioned and the need to investigate the use of alternative dietary sources such as those of algal origin.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

It is considered that consumption of very long chain (VLC, carbon chain length >= 20) n - 3 PUFAs in most Western populations is sub-optimal and benefits in relation to chronic disease would be gained from increased consumption. This review examines the current contribution that meat makes to dietary intake of VLC n - 3 PUFA and given its current low contribution, how ruminant meat may be enriched. Enrichment both directly with VLC n - 3 fatty acids and indirectly by increasing intake by the animals of alpha-linolenic acid (ALNA; C 18:3 n - 3) are considered. Since it now appears that dietary ALNA is a very limited source of VLC n - 3 PUFA in humans, the indirect route is controversial but since some forages-are rich sources of ALNA this route has many sustainability and environmental attractions. Consideration is also given to the increased concentrations of trans and conjugated fatty acids that will arise from enriching ruminant meat with PUFA.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

It is considered that consumption of very long chain (VLC, carbon chain length >= 20) n - 3 PUFAs in most Western populations is sub-optimal and benefits in relation to chronic disease would be gained from increased consumption. This review examines the current contribution that meat makes to dietary intake of VLC n - 3 PUFA and given its current low contribution, how ruminant meat may be enriched. Enrichment both directly with VLC n - 3 fatty acids and indirectly by increasing intake by the animals of alpha-linolenic acid (ALNA; C 18:3 n - 3) are considered. Since it now appears that dietary ALNA is a very limited source of VLC n - 3 PUFA in humans, the indirect route is controversial but since some forages-are rich sources of ALNA this route has many sustainability and environmental attractions. Consideration is also given to the increased concentrations of trans and conjugated fatty acids that will arise from enriching ruminant meat with PUFA.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

There is clear evidence of the nutritional benefits of consuming long-chain n-3 PUFA, which are found predominantly in oily fish. However, oily fish consumption, particularly in the United Kingdom, is declining, as is the consumption of all meats with the exception of poultry, which has increased in consumption by 73% in the last 30 yr. This pattern, if less marked, is reflected throughout Europe, and therefore one means of increasing long-chain n-3 PUFA consumption would be to increase the long-chain n-3 PUFA content in the edible tissues of poultry. This review considers the feasibility of doing this, concentrating particularly on chickens and turkeys. It begins by summarizing the benefits to human health of consuming greater quantities of n-3 FA and the sources of n-3 PUFA in the human diet. The literature on altering the FA composition of poultry meat is then reviewed, and the factors affecting the incorporation of n-3 PUFA into edible tissues of poultry are investigated. The concentration of alpha-linolenic acid (ALA) in the edible tissues of poultry is readily increased by increasing the concentration of ALA in the birds' diet (particularly meat with skin, and dark meat to a greater extent than white meat). The concentration of EPA in both white and dark meat is also increased when the birds' diet is supplemented with EPA, although supplementing the diet with the precursor (ALA) does not result in a noticeable increase in EPA content in the edible tissues. Although supplementing the birds' diets with relatively high concentrations of DHA does result in an increased concentration of DHA in the tissues, the relationship between dietary and tissue concentrations of DHA is much weaker than that observed with ALA and EPA. The impact that altering the FA composition of edible poultry tissue may have on the organoleptic and storage qualities of poultry products is also considered.