2 resultados para myofibrosis
Resumo:
In renovascular hypertensive rats, low doses of angiotensin converting enzyme (ACE) inhibitors have been found to prevent myocardial hypertrophy independent of blood pressure level. This finding would suggest humoral rather than mechanical control of myocyte growth. The aim of this study was to examine the effect of nonantihypertensive doses of ACE inhibitor on myocardial hypertrophy and necrosis in hypertensive rats. Renovascular hypertension (RHT) was induced in four-week-old Wistar rats. Twenty-eight animals were treated for four weeks with three doses of ramipril (0.01, 0.1 or 1.0 mg/kg/day, which are unable to lower blood pressure. Fourteen animals were not treated (RHT group). A sham operated, age/sex-matched group was used as control (n=10). Myocardial histology was analysed in 3 μm thick sections of the ventricle stained with either haematoxylin-eosin, reticulin silver stain or Masson's trichrome. There was a significant correlation between systolic blood pressure and left ventricular to body weight ratio in both sets of animals: untreated plus controls and ramipril-treated rats. ACE inhibition prevented myocyte and perivascular necrosis and fibrosis in a dose-dependent manner. We conclude that myocardial hypertrophy in rats with renovascular hypertension is directly related to arterial pressure, and that this relationship is not affected by nonantihypertensive doses of ACE inhibitor. Myocardial necrosis/fibrosis and coronary artery damage induced by angiotensin II are prevented by ACE inhibitor in a dose-dependent manner, despite the presence of arterial hypertension.
Resumo:
Background: Although skeletal muscle atrophy and changes in myosin heavy chain (MyHC) isoforms have often been observed during heart failure, their pathophysiological mechanisms are not completely defined. In this study we tested the hypothesis that skeletal muscle phenotype changes are related to myogenic regulatory factors and myostatin/follistatin expression in spontaneously hypertensive rats (SHR) with heart failure. Methods: After developing tachypnea, SHR were subjected to transthoracic echocardiogram. Pathological evidence of heart failure was assessed during euthanasia. Age-matched Wistar-Kyoto (WKY) rats were used as controls. Soleus muscle morphometry was analyzed in histological sections, and MyHC isoforms evaluated by electrophoresis. Protein levels were assessed by Western blotting. Statistical analysis: Student's t test and Pearson correlation. Results: All SHR presented right ventricular hypertrophy and seven had pleuropericardial effusion. Echocardiographic evaluation showed dilation in the left chambers and left ventricular hypertrophy with systolic and diastolic dysfunction in SHR. Soleus weight and fiber cross sectional areas were lower (WKY 3615±412; SHR 2035±224 μm2; P < 0.001), and collagen fractional volume was higher in SHR. The relative amount of type I MyHC isoform was increased in SHR. Myogenin, myostatin, and follistatin expression was lower and MRF4 levels higher in SHR. Myogenin and follistatin expression positively correlated with fiber cross sectional areas and MRF4 levels positively correlated with I MyHC isoform. Conclusion: Reduced myogenin and follistatin expression seems to participate in muscle atrophy while increased MRF4 protein levels can modulate myosin heavy chain isoform shift in skeletal muscle of spontaneously hypertensive rats with heart failure. © 2012 Elsevier B.V.