4 resultados para mycovirus
Resumo:
Pseudocercospora griseola (Sacc.) Crous &. Braun is a widespread fungal phytopathogen that is responsible for angular leaf spot in the common bean (Phaseolus vulgaris L.). A number of fungal phytopathogens have been shown to harbour mycoviruses, and this possibility was investigated in populations of Pseudocercospora griseola. The total nucleic acid extracts of 61 fungal isolates were subjected to agarose gel electrophoresis. Small fragments (800-4800 bp) could be identified in 42 of the samples. The presence of dsRNA in isolate Ig838 was confirmed by treatment of total nucleic acid with DNase, RNase A, and nuclease S I. Transmission electron microscopy revealed the presence of viral-like particles 40 nm in diameter in the mycelia of 2 fungal isolates, namely 29-3 and Ig838. The transmission of dsRNA by means of conidia was 100% for isolate 29-3, but there was loss of 1-6 fragments of dsRNA in monosporic colonies of isolate Ig848. Cycloheximide treatment failed to inhibit the mycovirus in isolate 29-3, but proved efficient in the elimination of the 2.2, 2.0, 1.8, 1.2 and 1.0 kb fragments in 2 colonies of isolate Ig848. The occurrence of a mycovirus in Pseudocercospora griseola was demonstrated for the first time in the present study.
Resumo:
Fungi are disease-causing agents in plants and affect crops of economic importance. One control method is to induce resistance in the host by using biological control with hypovirulent phytopathogenic fungi. Here, we report the detection of a mycovirus in a strain of Colletotrichum gloeosporioides causing anthracnose of cashew tree. The strain C. gloeosporioides URM 4903 was isolated from a cashew tree (Anacardium occidentale) in Igarassu, PE, Brazil. After nucleic acid extraction and electrophoresis, the band corresponding to a possible double-stranded RNA (dsRNA) was purified by cellulose column chromatography. Nine extrachromosomal bands were obtained. Enzymatic digestion with DNAse I and Nuclease S1 had no effect on these bands, indicating their dsRNA nature. Transmission electron microscopic examination of extracts from this strain showed the presence of isometric particles (30-35 nm in diameter). These data strongly suggest the infection of this C. gloeosporioides strain by a dsRNA mycovirus. Once the hypovirulence of this strain is confirmed, the strain may be used for the biological control of cashew anthracnose.
Resumo:
Choosing natural enemies to suppress pest population has been for a long the key of biological control. Overtime the term biological control has also been applied to the use of suppressive soils, bio-disinfection and biopesticides. Biological control agents (BCA) and natural compounds, extracted or fermented from various sources, are the resources for containing phytopathogens. BCA can act through direct antagonism mechanisms or inducing hypovirulence of the pathogen. The first part of the thesis focused on mycoviruses infecting phytopathogenic fungi belonging to the genus Fusarium. The development of new approaches capable of faster dissecting the virome of filamentous fungi samples was performed. The semiconductor-based sequencer Ion Torrent™ and the nanopore-based sequencer MinION have been exploited to analyze DNA and RNA referable to viral genomes. Comparison with GeneBank accessions and sequence analysis allowed to identify more than 40 putative viral species, some of these mycovirus genera have been studied as inducers of hypovirulence in several phytopathogenic fungi, therefore future works will focus on the comparison of the morphology and physiology of the fungal strain infected and cured by the viruses identified and their possible use as a biocontrol agent. In a second part of the thesis the potential of botanical pesticides has been evaluated for the biocontrol of phloem limited phytopathogens such as phytoplasmas. The only active compounds able to control phytoplasmas are the antibiotic oxytetracyclines and in vitro direct and fast screening of new antimicrobials compounds on media is almost impossible due to the difficulty to culture phytoplasmas. For this reason, a simple and reliable screening method was developed to evaluate the effects of antimicrobials directly on phytoplasmas by an “ex-vivo” approach. Using scanning electron microscopy (SEM) in parallel with molecular tools (ddRT-PCR), the direct activity of tetracyclines on phytoplasma cells was verified, identifying also a promising compound showing similar activity.
Resumo:
This research aims to discover the virome diversity and composition in Fusarium poae and Fusarium proliferatum collections, characterize the mycovirus that may have an effect on host pathogenicity to provide potential materials for the biological control of Fusarium spp. pathogens. Next-Generation Sequencing (NGS) analysis of 30 F. poae isolates revealed an extreme diversity of mycoviruses. Bioinformatic analysis shows that contigs associated with viral genome belong to the families: Hypoviridae, Mitoviridae, Partitiviridae, Polymycoviridae, proposed Alternaviridae, proposed Fusagraviridae, proposed Fusariviridae, proposed Yadokariviridae, and Totiviridae. The complete genomes of 12 viruses were obtained by assembling contigs and overlapping cloning sequences. Moreover, all the F. poae isolates analyzed are multi-infected. Fusarium poae partitivirus 1 appears in all the 30 strains, followed by Fusarium poae fusagravirus 1 (22), Fusarium poae mitovirus 2 (18), Fusarium poae partitivirus 3 (16), and Fusarium poae mitovirus 2 and 3 (11). Using the same approach, the virome of F. proliferatum collections resulted in lower diversity and abundance. The identified mycoviruses belong to the family Mitoviridae and Mymonaviridae. Interestingly, most F. proliferatum isolates are not multi-infected. The complete genomes of four viruses were obtained by assembling contigs and overlapping cloning sequences. By multiple liner regression of the virome composition and growth rate of 30 F. poae, Fusarium poae mitovirus 3 is significantly correlated with the growth rate among F. poae collection. Furthermore, the principal component analysis of the virome composition from 30 F. poae showed that the presence of Fusarium poae mitovirus 3 and other two viruses could increase the F. poae growth rate. The curing experiment and pathogenicity test in Petri indicated that Fusarium poae hypovirus 1 might be associated with the host hypovirulence phenotype, while Fusarium poae fusagravirus 1 and Fusarium poae partitivirus 3 may have some beneficial effect on host pathogenicity.