995 resultados para mycobacterial infection
Resumo:
BACKGROUND/AIMS: Bacillus Calmette Guerin (BCG) infection causes hepatic injury following granuloma formation and secretion of cytokines which render mice highly sensitive to endotoxin-mediated hepatotoxicity. This work investigates the role of inducible nitric oxide synthase (iNOS) in liver damage induced by BCG and endotoxins in BCG-infected mice. METHODS: Liver injury and cytokine activation induced by BCG and by LPS upon BCG infection (BCG/LPS) were compared in wild-type and iNOS-/- mice. RESULTS: iNOS-/- mice infected with living BCG are protected from hepatic injury when compared to wild-type mice which express iNOS protein in macrophages forming hepatic granulomas. In addition, iNOS-/- mice show a decrease in BCG-induced IFN-gamma serum levels. LPS challenge in BCG-infected mice strongly activates iNOS in the liver and spleen of wild-type mice which show important liver damage associated with a dramatic increase in TNF and IL-6 and also Th1 type cytokines. In contrast, iNOS-/- mice are protected from liver injury after BCG/LPS challenge and their TNF, IL-6 and Th1 type cytokine serum levels raise moderately. CONCLUSIONS: These results demonstrate that nitric oxide (NO) from iNOS is involved in hepatotoxicity induced by both mycobacterial infection and endotoxin effects upon BCG infection and that inhibition of NO from iNOS protects from liver injuries.
Resumo:
In order to develop a new experimental animal model of infection with Mycobacterium chelonae in keratomileusis, we conducted a double-blind prospective study on 24 adult male New Zealand rabbits. One eye of each rabbit was submitted to automatic lamellar keratotomy with the automatic corneal shaper under general anesthesia. Eyes were immunosuppressed by a single local injection of methyl prednisolone. Twelve animals were inoculated into the keratomileusis interface with 1 µl of 10(6) heat-inactivated bacteria (heat-inactivated inoculum controls) and 12 with 1 µl of 10(6) live bacteria. Trimethoprim drops (0.1%, w/v) were used as prophylaxis for the surgical procedure every 4 h (50 µl, qid). Animals were examined by 2 observers under a slit lamp on the 1st, 3rd, 5th, 7th, 11th, 16th, and 23rd postoperative days. Slit lamp photographs were taken to document clinical signs. Animals were sacrificed when corneal disease was detected and corneal samples were taken for microbiological analysis. Eleven of 12 experimental rabbits developed corneal disease, and M. chelonae could be isolated from nine rabbits. Eleven of the 12 controls receiving a heat-inactivated inoculum did not develop corneal disease. M. chelonae was not isolated from any of the control rabbits receiving a heat-inactivated inoculum, or from the healthy cornea of control rabbits. Corneal infection by M. chelonae was successfully induced in rabbits submitted to keratomileusis. To our knowledge, this is the first animal model of M. chelonae infection following corneal flaps for refractive surgery to be described in the literature and can be used for the analysis of therapeutic responses.
Resumo:
Several primary immunodeficiency diseases affecting the interleukin 12/interferon gamma (IFN-gamma) pathway have been identified, most of them characterized by recurrent and protracted infections produced by intracellular microorganisms, particularly by several species of mycobacteria. In the present study we analyzed the expression of IFN-gamma receptor (IFN-gammaR) and signal transducer and activator of transcription 1 (STAT-1) in 4 children with Mycobacterium tuberculosis infection of uncommon clinical presentation. These molecules were evaluated by flow cytometry and Western blotting in B cells transformed with Epstein-Barr virus and mutations were scanned by single-strand conformational polymorphisms and DNA sequencing. The expression of IFN-gammaR1 was normal in all 4 patients. The genetic analysis of IFN-gammaR1 and IFN-gammaR2 coding sequences did not reveal any mutation. The expression of the STAT-1 molecule was similar in patients and healthy controls; however, when the phosphorylation of this transcription factor in response to IFN-gamma activation was evaluated by Western blot, a significant lower signal was evident in one patient. These data indicate that there are no alterations in the expression or function of the IFN-gammaR chains in these patients. However, the low level of STAT-1 phosphorylation found in one of these patients might be explained by a defect in one of the molecules involved in the signal transduction pathway after IFN-gamma interacts with its receptor. In the other three patients the inability to eliminate the mycobacteria may be due to a defect in another effector mechanism of the mononuclear phagocytes.
Resumo:
Conflicting findings about the association between leprosy and TLR1 variants N248S and I602S have been reported. Here, we performed case-control and family based studies, followed by replication in 2 case-control populations from Brazil, involving 3162 individuals. Results indicated an association between TLR1 248S and leprosy in the case-control study (SS genotype odds ratio [OR], 1.81; P = .004) and the family based study (z = 2.02; P = .05). This association was consistently replicated in other populations (combined OR, 1.51; P < .001), corroborating the finding that 248S is a susceptibility factor for leprosy. Additionally, we demonstrated that peripheral blood mononuclear cells (PBMCs) carrying 248S produce a lower tumor necrosis factor/interleukin-10 ratio when stimulated with Mycobacterium leprae but not with lipopolysaccharide or PAM3cysK4. The same effect was observed after infection of PBMCs with the Moreau strain of bacillus Calmette-Guerin but not after infection with other strains. Finally, molecular dynamics simulations indicated that the Toll-like receptor 1 structure containing 248S amino acid is different from the structure containing 248N. Our results suggest that TLR1 248S is associated with an increased risk for leprosy, consistent with its hypoimmune regulatory function.
Resumo:
Tuberculosis is the leading cause of death in the world due to a single infectious agent, making it critical to investigate all aspects of the immune response mounted against the causative agent, Mycobacterium tuberculosis , in order to better treat and prevent disease. Previous observations show a disparity in the ability to control mycobacterial growth between mouse strains sufficient in C5, such as C57BL/6 and B10.D2/nSnJ, and those naturally deficient in C5, such as A/J and B10.D2/nSnJ, with C5 deficient mice being more susceptible. It has been shown that during M. tuberculosis infection, C5 deficient macrophages have a defect in production of interleukin (IL)-12, a cytokine involved in the cyclical activation between infected macrophages and effector T cells. T cells stimulated by IL-12 produce interferon (IFN)-γ, the signature cytokine of T helper type 1 (Th1) cells. It is known that a cell-mediated Th1 response is crucial for control of M. tuberculosis in the lungs of humans and mice. This study demonstrates that murine T cells express detectable levels of CD88, a receptor for C5a (C5aR), following antigen presentation by macrophages infected with mycobacteria. T cells from C5 deficient mice infected with M. tuberculosis were found to secrete less IFN-γ and had a reduced Th1 phenotype associated with fewer cells expressing the transcription factor, T-box expressed in T cells (T-bet). The altered Th1 phenotype in M. tuberculosis infected C5 deficient mice coincided with a rise in IL-4 and IL-10 secretion from Th2 cells and inducible regulatory T cells, respectively. It was found that the ineffective T cell response to mycobacteria in C5 deficient mice was due indirectly to a lack of C5a via poor priming by infected macrophages and possibly by a direct interaction between T cells and C5a peptide. Therefore, these studies show a link between the cells of the innate and adaptive arms of the immune system, macrophages and T cells respectively, that was mediated by C5a using a mouse model of M. tuberculosis infection. ^
Resumo:
Cell-mediated immunity is critical for host resistance to tuberculosis. T lymphocytes recognizing antigens presented by the major histocompatibility complex (MHC) class I and class II molecules have been found to be necessary for control of mycobacterial infection. Mice genetically deficient in the generation of MHC class I and class Ia responses are susceptible to mycobacterial infection. Although soluble protein antigens are generally presented by macrophages to T cells through MHC class II molecules, macrophages infected with Mycobacterium tuberculosis or bacille Calmette-Guerin have been shown to facilitate presentation of ovalbumin through the MHC class I presentation pathway via a TAP-dependent mechanism. How mycobacteria, thought to reside within membrane-bound vacuoles, facilitate communication with the cytoplasm and enable MHC class I presentation presents a paradox. By using confocal microscopy to study the localization of fluorescent-tagged dextrans of varying size microinjected intracytoplasmically into macrophages infected with bacille Calmette-Guerin expressing the green fluorescent protein, molecules as large as 70 kilodaltons were shown to gain access to the mycobacterial phagosome. Possible biological consequences of the permeabilization of vacuolar membranes by mycobacteria would be pathogen access to host cell nutrients within the cytoplasm, perhaps contributing to bacterial pathogenesis, and access of microbial antigens to the MHC class I presentation pathway, contributing to host protective immune responses.
Resumo:
Several studies point to the increased risk of reactivation of latent tuberculosis infection (LTBI) in patients with chronic inflammatory arthritis (CIAs) after using tumour necrosis factor (TNF)a blockers. To study the incidence of active mycobacterial infections (aMI) in patients starting TNFa blockers, 262 patients were included in this study: 109 with rheumatoid arthritis (RA), 93 with ankylosing spondylitis (AS), 44 with juvenile idiopathic arthritis (JIA) and 16 with psoriatic arthritis (PsA). All patients had indication for anti-TNFa therapy. Epidemiologic and clinical data were evaluated and a simple X-ray and tuberculin skin test (TST) were performed. The control group included 215 healthy individuals. The follow-up was 48 months to identify cases of aMI. TST positivity was higher in patients with AS (37.6%) than in RA (12.8%), PsA (18.8%) and JIA (6.8%) (p < 0.001). In the control group, TST positivity was 32.7%. Nine (3.43%) patients were diagnosed with aMI. The overall incidence rate of aMI was 86.93/100,000 person-years [95% confidence interval (CI) 23.6-217.9] for patients and 35.79/100,000 person-years (95% CI 12.4-69.6) for control group (p < 0.001). All patients who developed aMI had no evidence of LTBI at the baseline evaluation. Patients with CIA starting TNFa blockers and no evidence of LTBI at baseline, particularly with nonreactive TST, may have higher risk of aMI.
Resumo:
The course and outcome of infection with mycobacteria are determined by a complex interplay between the immune system of the host and the survival mechanisms developed by the bacilli. Recent data suggest a regulatory role of histamine not only in the innate but also in the adaptive immune response. We used a model of pulmonary Mycobacterium tuberculosis infection in histamine-deficient mice lacking histidine decarboxylase (HDC(-/-)), the histamine-synthesizing enzyme. To confirm that mycobacterial infection induced histamine production, we exposed mice to M. tuberculosis and compared responses in C57BL/6 (wild-type) and HDC(-/-) mice. Histamine levels increased around fivefold above baseline in infected C57BL/6 mice at day 28 of infection, whereas only small amounts were detected in the lungs of infected HDC(-/-) mice. Blocking histamine production decreased both neutrophil influx into lung tissue and the release of proinflammatory mediators, such as interleukin 6 (IL-6) and tumor necrosis factor alpha (TNF-alpha), in the acute phase of infection. However, the accumulation and activation of CD4(+) T cells were augmented in the lungs of infected HDC(-/-) mice and correlated with a distinct granuloma formation that contained abundant lymphocytic infiltration and reduced numbers of mycobacteria 28 days after infection. Furthermore, the production of IL-12, gamma interferon, and nitric oxide, as well as CD11c(+) cell influx into the lungs of infected HDC(-/-) mice, was increased. These findings indicate that histamine produced after M. tuberculosis infection may play a regulatory role not only by enhancing the pulmonary neutrophilia and production of IL-6 and TNF-alpha but also by impairing the protective Th1 response, which ultimately restricts mycobacterial growth.
Resumo:
Cutaneous tuberculosis has re-emerged in the last 15 years together with the higher incidence of pulmonary tuberculosis and multidrug resistance. The choice for a single diagnostic tool among the many available today is a challenge. Our objective was to compare polymerase chain reaction (PCR) with other exams in the diagnosis of cutaneous tuberculosis and atypical mycobacteria skin infection. PCR and a set of five different exams were performed in 32 patients (34 samples of paraffin-embedded tissue) evaluated for 3 years in a university hospital, considering the response to mycobacterial infection treatment as a positive case. PCR was the most sensitive (88%) and specific (83%) exam. Culture, immunohistochemistry and acid-fast bacilli were not in agreement with clinical response to treatment. Although PCR is a useful tool, careful clinical exam is still the gold standard for the evaluation and treatment of cutaneous tuberculosis and mycobacteria skin infection.
Resumo:
INTRODUCTION: Mycobacterium tuberculosis may cause a large variety of clinical presentations due to its ability to disseminate by contiguity or hematogenously. Tuberculosis may remain undiagnosed for years due to the chronic course of the disease, with potentially life-threatening long-term complications. CASE PRESENTATION: In this case report, we describe a tuberculous aortic graft infection in a 72-year-old man documented by polymerase chain reaction and cultures. The patient presented with three episodes of hemoptysis following a remote history of miliary tuberculosis. The infection was treated by graft replacement and prolonged antimycobacterial therapy. CONCLUSION: Tuberculous infection of a vascular graft is an uncommon complication, but should be considered in patients with an intravascular device and a history of previous tuberculosis, especially when hematogenous spread may have occurred a few months after surgery, or when an active mycobacterial infection is present in close proximity to the graft.
Resumo:
OVERVIEW: Mycobacterium microti infection is infrequently described in cats in the veterinary literature. It can be one of a large number of possible differential diagnoses in a feline patient with dermal nodules and non-healing draining ulcers, and can occasionally spread to involve the lungs and/or other areas of the body. CASE SUMMARY: This report describes the clinical signs, eventual diagnosis and variable response to treatment in a cat in Switzerland with recurrent cutaneous M microti infection. Only after several diagnostic and therapeutic attempts, over more than 2 years, was the species of Mycobacterium finally identified and targeted therapy given. PRACTICAL RELEVANCE: For any cat in which there is even a low suspicion of mycobacterial infection, the authors recommend that an aggressive diagnostic approach is taken. Tissue specimens should be collected and frozen early on, and, as soon as acid-fast bacilli are detected, samples should be sent to a mycobacterial reference laboratory for definitive identification. LITERATURE REVIEW: A review of the literature relating to the aetiopathogenesis, diagnosis and management of M microti infection in cats and dogs is included. This is supplemented with clinical and therapeutic experience gained from this case and other, unpublished cases managed over the past 15 years by one of the authors (DGM).
Resumo:
AIM: To test whether humoral immune reaction against mycobacteria may play a role in anti-Saccharomyces cerevisiae antibodies (ASCA) generation in Crohn's disease (CD) and/or whether it correlates with clinical subtypes. METHODS: The dominant ASCA epitope was detected by Galanthus nivalis lectin (GNL)-binding assay. ASCA and IgG against mycobacterial lysates (M avium, M smegmatis, M chelonae, M bovis BCG, M avium ssp. paratuberculosis (MAP)] or purified lipoarabinomannans (LAM) were detected by ELISA. ASCA and anti-mycobacterial antibodies were affinity purified to assess cross-reactivities. Anti-mycobacterial IgG were induced by BCG-infection of mice. RESULTS: GNL bound to different extents to mycobacterial lysates, abundantly to purified mannose-capped (Man) LAM from M tuberculosis, but not to uncapped LAM from M smegmatis. Fifteen to 45% of CD patients but only 0%-6% of controls were seropositive against different mycobacterial antigens. Anti-mycobacterial IgG correlated with ASCA (r = 0.37-0.64; P = 0.003-P < 0.001). ASCA-positivity and deficiency for mannan-binding lectin synergistically associated with anti-mycobacterial IgG. In some patients, anti-mycobacterial antibodies represent cross-reactive ASCA. Vice-versa, the predominant fraction of ASCA did not cross-react with mycobacteria. Finally, fistulizing disease associated with antibodies against M avium, M smegmatis and MAP (P = 0.024, 0.004 and 0.045, respectively). CONCLUSION: Similar to ASCA, seroreactivity against mycobacteria may define CD patients with complicated disease and a predisposition for immune responses against ubiquitous antigens. While in some patients anti-mycobacterial antibodies strongly cross-react with yeast mannan; these cross-reactive antibodies only represent a minor fraction of total ASCA. Thus, mycobacterial infection unlikely plays a role in ASCA induction.
Resumo:
Mycobacterium tuberculosis, the causative agent of tuberculosis, survives within macrophages by altering host cell activation and by manipulating phagosomal trafficking and acidification. Part of the success of M. tuberculosis as a major human pathogen has been attributed to its cell wall, a unique structure largely comprised of mycolic acids. Trehalose 6,6′-dimycolate (TDM) is the major glycolipid component on the surface of the mycobacterial cell wall. This study examines the contribution of TDM during mycobacterial infection of murine macrophages. Virulent M. tuberculosis was chemically depleted of surface-exposed TDM using petroleum ether extraction. Compared to their native counterparts, delipidated M. tuberculosis showed similar growth in broth culture. Bone marrow-derived macrophages (BMM) or the murine macrophage-like cell line J774A.1 were infected with delipidated M. tuberculosis, and responses were compared to cells infected with native M. tuberculosis. Delipidated M. tuberculosis demonstrated significantly decreased viability in macrophages by seven days after infection. Reconstitution of delipidated organisms with pure TDM restored viability. Infection with native M. tuberculosis led to high cellular production of cytokines (IL-1β, IL-6, IL-12, and TNF-α) and chemokines (MCP-1 and MIP-1α); infection with delipidated M. tuberculosis significantly abrogated responses. Cytokine and chemokine production were restored when delipidated organisms were reconstituted with TDM. Responses were specifically induced by TDM; all measured cytokines were elicited from macrophages incubated with TDM-coated beads, while control beads coated with bovine serum albumin (BSA) did not induce cytokine production. Visualization of mycobacterial localization in J774A.1 cells using fluorescence microscopy revealed that delipidated M. tuberculosis were significantly more likely to traffic to acidic vesicles (lysosomes) than native organisms. Reconstitution with TDM restored trafficking to non-acidic vesicles. Similarly, TDM-coated beads demonstrated significantly delayed localization to acidic vesicles compared to BSA-coated beads. In summary, the interaction of TDM with macrophages may regulate the outcome of M. tuberculosis infection by influencing cellular cytokine production and intracellular localization of organisms. This research has elucidated a novel and necessary role for TDM in survival of virulent M. tuberculosis in host macrophages during in vitro infection. ^
Resumo:
Thesis (Ph.D.)--University of Washington, 2016-04
Resumo:
Prostaglandins (PGs) and leukotrienes (LTs) are produced in Mycobacterium tuberculosis (Mtb)-infected lungs and have immune suppressive and protective effects, respectively. Considering that both of these mediators are produced during mycobacterial infection, we investigated the specific and relative biological importance of each in regulating host response in experimental tuberculosis. Administration of celecoxib, which was found to reduce lung levels of PGE(2) and increase LTB(4), enhanced the 60-day survival of Mtb-infected mice in 14%. However administration of MK-886, which reduced levels of LTB(4) but did not enhance PGE(2), reduced 60-day survival from 86% to 43% in Mtb-infected mice, and increased lung bacterial burden. MK-886 plus celecoxib reduced survival to a lesser extent than MK-886 alone. MK-886- and MK-886 plus celecoxib-treated animals exhibited reduced levels of the protective interleukin-12 and gamma-interferon. Our findings indicate that in this model, the protective effect of LTs dominates over the suppressive effect of PGs. (C) 2011 Elsevier Ltd. All rights reserved.