950 resultados para mutation inhibition


Relevância:

60.00% 60.00%

Publicador:

Resumo:

Studies have shown that Casearia sylvestris compounds protect DNA from damage both in vitro and in vivo. Complementarily, the aim of the present study was to assess the chemopreventive effect of casearin B (CASB) against DNA damage using the Ames test, the comet assay and the DCFDA antioxidant assay. The genotoxicity was assessed by the comet assay in HepG2 cells. CASB was genotoxic at concentrations higher than 0.30μM when incubated with the FPG (formamidopyrimidine-DNA glycosylase) enzyme. For the antigenotoxicity comet assay, CASB protected the DNA from damage caused by H2O2 in the HepG2 cell line in concentrations above 0.04μM with post-treatment, and above 0.08μM with pre-treatment. CASB was not mutagenic (Ames test) in TA 98 and TA 102. In the antimutagenicity assays, the compound was a strong inhibitor against aflatoxin B1 (AFB) in TA 98 (>88.8%), whereas it was moderate (42.7-59.4%) inhibitor against mytomicin C (MMC) in TA 102. Additionally, in the antioxidant assay using DCFDA, CASB reduced reactive oxygen species (ROS) generated by H2O2. In conclusion, CASB was genotoxic to HepG2 cells at high concentrations; was protective of DNA at low concentrations, as shown by the Ames test and comet assay; and was also antioxidant. © 2012 Elsevier Ltd.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

The presenilins (PSs) were identified as causative genes in cases of early-onset familial Alzheimer's disease (AD) and current evidence indicates that PSs are part of the gamma-secretase complex responsible for proteolytic processing of type I membrane proteins. p75NTR, a common neurotrophin receptor, was shown to be subject to gamma-secretase processing. However, it is not clear if the p75NTR downstream signal is altered in response to gamma-secretase cleavage, and further there is a possibility that AD-related PS mutations may affect this cleavage, resulting in pathogenic alterations in signal transduction. In this study, we confirmed that p75NTR downstream signalling is altered by PS2 mutation or gamma-secretase inhibition in SHSY-5Y cells. The activity of the small GTPase RhoA is strongly affected by these treatments. This study demonstrates that gamma-secretase and PS2 play an important role in regulating neurotrophin signal transduction and either mutation of PS2 or inhibition of gamma-secretase disturbs this function.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Cutaneous T-cell lymphomas (CTCLs) are malignancies of skin-homing lymphoid cells, which have so far not been investigated thoroughly for common oncogenic mutations. We screened 90 biopsy specimens from CTCL patients (41 mycosis fungoides, 36 Sézary syndrome, and 13 non-mycosis fungoides/Sézary syndrome CTCL) for somatic mutations using OncoMap technology. We detected oncogenic mutations for the RAS pathway in 4 of 90 samples. One mycosis fungoides and one pleomorphic CTCL harbored a KRAS(G13D) mutation; one Sézary syndrome and one CD30(+) CTCL harbored a NRAS(Q61K) amino acid change. All mutations were found in stage IV patients (4 of 42) who showed significantly decreased overall survival compared with stage IV patients without mutations (P = .04). In addition, we detected a NRAS(Q61K) mutation in the CTCL cell line Hut78. Knockdown of NRAS by siRNA induced apoptosis in mutant Hut78 cells but not in CTCL cell lines lacking RAS mutations. The NRAS(Q61K) mutation sensitized Hut78 cells toward growth inhibition by the MEK inhibitors U0126, AZD6244, and PD0325901. Furthermore, we found that MEK inhibitors exclusively induce apoptosis in Hut78 cells. Taken together, we conclude that RAS mutations are rare events at a late stage of CTCL, and our preclinical results suggest that such late-stage patients profit from MEK inhibitors.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Calcineurin mutation or inhibition enhanced the antifungal morphological effect of cell wall inhibitors caspofungin or nikkomycin Z against Aspergillus fumigatus. Quantification of 1,3-beta-d-glucan revealed decreased amounts in the calcineurin A (DeltacnaA) mutant. Calcineurin can be an excellent adjunct therapeutic target in combination with other cell wall inhibitors against A. fumigatus.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Acquired resistance to selective FLT3 inhibitors is an emerging clinical problem in the treatment of FLT3-ITD(+) acute myeloid leukaemia (AML). The paucity of valid pre-clinical models has restricted investigations to determine the mechanism of acquired therapeutic resistance, thereby limiting the development of effective treatments. We generated selective FLT3 inhibitor-resistant cells by treating the FLT3-ITD(+) human AML cell line MOLM-13 in vitro with the FLT3-selective inhibitor MLN518, and validated the resistant phenotype in vivo and in vitro. The resistant cells, MOLM-13-RES, harboured a new D835Y tyrosine kinase domain (TKD) mutation on the FLT3-ITD(+) allele. Acquired TKD mutations, including D835Y, have recently been identified in FLT3-ITD(+) patients relapsing after treatment with the novel FLT3 inhibitor, AC220. Consistent with this clinical pattern of resistance, MOLM-13-RES cells displayed high relative resistance to AC220 and Sorafenib. Furthermore, treatment of MOLM-13-RES cells with AC220 lead to loss of the FLT3 wild-type allele and the duplication of the FLT3-ITD-D835Y allele. Our FLT3-Aurora kinase inhibitor, CCT137690, successfully inhibited growth of FLT3-ITD-D835Y cells in vitro and in vivo, suggesting that dual FLT3-Aurora inhibition may overcome selective FLT3 inhibitor resistance, in part due to inhibition of Aurora kinase, and may benefit patients with FLT3-mutated AML.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Evasion of apoptosis contributes to both tumourigenesis and drug resistance in non-small cell lung carcinoma (NSCLC). The pro-apoptotic BCL-2 family proteins BAX and BAK are critical regulators of mitochondrial apoptosis. New strategies for targeting NSCLC in a mitochondria-independent manner should bypass this common mechanism of apoptosis block. BRCA1 mutation frequency in lung cancer is low; however, decreased BRCA1 mRNA and protein expression levels have been reported in a significant proportion of lung adenocarcinomas. BRCA1 mutation/deficiency confers a defect in homologous recombination DNA repair that has been exploited by synthetic lethality through inhibition of PARP (PARPi) in breast and ovarian cells; however, it is not known whether this same synthetic lethal mechanism exists in NSCLC cells. Additionally, it is unknown whether the mitochondrial apoptotic pathway is required for BRCA1/PARPi-mediated synthetic lethality. Here we demonstrate that silencing of BRCA1 expression by RNA interference sensitizes NSCLC cells to PARP inhibition. Importantly, this sensitivity was not attenuated in cells harbouring mitochondrial apoptosis block induced by co-depletion of BAX and BAK. Furthermore, we demonstrate that BRCA1 inhibition cannot override platinum resistance, which is often mediated by loss of mitochondrial apoptosis signalling, but can still sensitize to PARP inhibition. Finally we demonstrate the existence of a BRCA1-deficient subgroup (11–19%) of NSCLC patients by analysing BRCA1 protein levels using immunohistochemistry in two independent primary NSCLC cohorts. Taken together, the existence of BRCA1-immunodeficient NSCLC suggests that this molecular subgroup could be effectively targeted by PARP inhibitors in the clinic and that PARP inhibitors could be used for the treatment of BRCA1-immunodeficient, platinum-resistant tumours.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

OBJECTIVE: The fibroblast growth factor (FGF) family of signaling molecules has been associated with chemoresistance and poor prognosis in a number of cancer types, including lung, breast, ovarian, prostate, and head and neck carcinomas. Given the identification of activating mutations in the FGF receptor 2 (FGFR2) receptor tyrosine kinase in a subset of endometrial tumors, agents with activity against FGFRs are currently being tested in clinical trials for recurrent and progressive endometrial cancer. Here, we evaluated the effect of FGFR inhibition on the in vitro efficacy of chemotherapy in endometrial cancer cell lines. METHODS: Human endometrial cancer cell lines with wild-type or activating FGFR2 mutations were used to determine any synergism with concurrent use of the pan-FGFR inhibitor, PD173074, and the chemotherapeutics, doxorubicin and paclitaxel, on cell proliferation and apoptosis. RESULTS: FGFR2 mutation status did not alter sensitivity to either chemotherapeutic agent alone. The combination of PD173074 with paclitaxel or doxorubicin showed synergistic activity in the 3 FGFR2 mutant cell lines evaluated. In addition, although nonmutant cell lines were resistant to FGFR inhibition alone, the addition of PD173074 potentiated the cytostatic effect of paclitaxel and doxorubicin in a subset of FGFR2 wild-type endometrial cancer cell lines. CONCLUSIONS: Together these data suggest a potential therapeutic benefit to combining an FGFR inhibitor with standard chemotherapeutic agents in endometrial cancer therapy particularly in patients with FGFR2 mutation positive tumors.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Sphingosine 1-phosphate (SPP), a bioactive sphingolipid metabolite, inhibits chemoinvasiveness of the aggressive, estrogen-independent MDA-MB-231 human breast cancer cell line. As in many other cell types, SPP stimulated proliferation of MDA-MB-231 cells, albeit to a lesser extent. Treatment of MDA-MB-231 cells with SPP had no significant effect on their adhesiveness to Matrigel, and only high concentrations of SPP partially inhibited matrix metalloproteinase-2 activation induced by Con A. However, SPP at a concentration that strongly inhibited invasiveness also markedly reduced chemotactic motility. To investigate the molecular mechanisms by which SPP interferes with cell motility, we examined tyrosine phosphorylation of focal adhesion kinase (FAK) and paxillin, which are important for organization of focal adhesions and cell motility. SPP rapidly increased tyrosine phosphorylation of FAK and paxillin and of the paxillin-associated protein Crk. Overexpression of FAK and kinase-defective FAK in MDA-MB-231 cells resulted in a slight increase in motility without affecting the inhibitory effect of SPP, whereas expression of FAK with a mutation of the major autophosphorylation site (F397) abolished the inhibitory effect of SPP on cell motility. In contrast, the phosphoinositide 3'-kinase inhibitor, wortmannin, inhibited chemotactic motility in both vector and FAK-F397- transfected cells. Our results suggest that autophosphorylation of FAK on Y397 may play an important role in SPP signaling leading to decreased cell motility.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The startling increase in the occurrence of rifampicin (Rif) resistance in the clinical isolates of Mycobacterium tuberculosis worldwide is posing a serious concern to tuberculosis management. The majority of Rif resistance in bacteria arises from mutations in the RpoB subunit of the RNA polymerase. We isolated M. smegmatis strains harbouring either an insertion (6 aa) or a deletion (10 aa) in their RpoB proteins. Although these strains showed a compromised fitness for growth in 7H9 Middlebrook medium, their resistance to Rif was remarkably high. The attenuated growth of the strains correlated with decreased specific activities of the RNA polymerases from the mutants. While the RNA polymerases from the parent or a mutant strain (harbouring a frequently occurring mutation, H442Y, in RpoB) were susceptible to Rif-mediated inhibition of transcription from calf thymus DNA, those from the insertion and deletion mutants were essentially refractory to such inhibition. Three-dimensional structure modelling revealed that the RpoB amino acids that interact with Rif are either deleted or unable to interact with Rif due to their unsuitable spatial positioning in these mutants. We discuss possible uses of the RpoB mutants in studying transcriptional regulation in mycobacteria and as potential targets for drug design.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Macduff, J. H., Humphreys, M. O., Thomas, Howard (2002). Effects of a stay-green mutation on plant nitrogen relations in Lolium perenne during N starvation and after defoliation. Annals of Botany, 89 (1), 11-21. Sponsorship: BBSRC RAE2008

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Pulmonary fibrosis is a progressive, dysregulated response to injury culminating in compromised lung function due to excess extracellular matrix production. The heparan sulfate proteoglycan syndecan-4 is important in mediating fibroblast-matrix interactions, but its role in pulmonary fibrosis has not been explored. To investigate this issue, we used intratracheal instillation of bleomycin as a model of acute lung injury and fibrosis. We found that bleomycin treatment increased syndecan-4 expression. Moreover, we observed a marked decrease in neutrophil recruitment and an increase in both myofibroblast recruitment and interstitial fibrosis in bleomycin-treated syndecan-4-null (Sdc4-/-) mice. Subsequently, we identified a direct interaction between CXCL10, an antifibrotic chemokine, and syndecan-4 that inhibited primary lung fibroblast migration during fibrosis; mutation of the heparin-binding domain, but not the CXCR3 domain, of CXCL10 diminished this effect. Similarly, migration of fibroblasts from patients with pulmonary fibrosis was inhibited in the presence of CXCL10 protein defective in CXCR3 binding. Furthermore, administration of recombinant CXCL10 protein inhibited fibrosis in WT mice, but not in Sdc4-/- mice. Collectively, these data suggest that the direct interaction of syndecan-4 and CXCL10 in the lung interstitial compartment serves to inhibit fibroblast recruitment and subsequent fibrosis. Thus, administration of CXCL10 protein defective in CXCR3 binding may represent a novel therapy for pulmonary fibrosis.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

There is strong evidence for the involvement of alpha-synuclein in the pathologies of several neurodegenerative disorders, including PD (Parkinson's disease). Development of disease appears to be linked to processes that increase the rate at which alpha-synuclein forms aggregates. These processes include increased protein concentration (via either increased rate of synthesis or decreased rate of degradation), and altered forms of alpha-synuclein (such as truncations, missense mutations, or chemical modifications by oxidative reactions). Aggregated forms of the protein are toxic to cells and one therapeutic strategy would be to reduce the rate at which aggregation occurs. To this end we have designed several peptides that reduce alpha-synuclein aggregation. A cell-permeable version of one such peptide was able to inhibit the DNA damage induced by Fe(II) in neuronal cells transfected with alpha-synuclein (A53T), a familial PD-associated mutation.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Evasion of apoptosis contributes to both tumourigenesis and drug resistance in non-small cell lung carcinoma (NSCLC). The pro-apoptotic BCL-2 family proteins BAX and BAK are critical regulators of mitochondrial apoptosis. New strategies for targeting NSCLC in a mitochondria-independent manner should bypass this common mechanism of apoptosis block. BRCA1 mutation frequency in lung cancer is low; however, decreased BRCA1 mRNA and protein expression levels have been reported in a significant proportion of lung adenocarcinomas. BRCA1 mutation/deficiency confers a defect in homologous recombination DNA repair that has been exploited by synthetic lethality through inhibition of PARP (PARPi) in breast and ovarian cells; however, it is not known whether this same synthetic lethal mechanism exists in NSCLC cells. Additionally, it is unknown whether the mitochondrial apoptotic pathway is required for BRCA1/PARPi-mediated synthetic lethality. Here we demonstrate that silencing of BRCA1 expression by RNA interference sensitizes NSCLC cells to PARP inhibition. Importantly, this sensitivity was not attenuated in cells harbouring mitochondrial apoptosis block induced by co-depletion of BAX and BAK. Furthermore, we demonstrate that BRCA1 inhibition cannot override platinum resistance, which is often mediated by loss of mitochondrial apoptosis signalling, but can still sensitize to PARP inhibition. Finally we demonstrate the existence of a BRCA1-deficient subgroup (11-19%) of NSCLC patients by analysing BRCA1 protein levels using immunohistochemistry in two independent primary NSCLC cohorts. Taken together, the existence of BRCA1-immunodeficient NSCLC suggests that this molecular subgroup could be effectively targeted by PARP inhibitors in the clinic and that PARP inhibitors could be used for the treatment of BRCA1-immunodeficient, platinum-resistant tumours. Copyright (C) 2011 Pathological Society of Great Britain and Ireland. Published by John Wiley & Sons, Ltd.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Following the discovery of the Janus kinase (JAK) 2 V617F mutation in 2005 the explosion of research and drug development activity has not only advanced our understanding of the pathogenesis of myeloproliferative neoplasms (MPNs) but also triggered debate about classification, allowed revised diagnostic and response criteria, provided a target for treatment and a mode of monitoring its success. These changes and the resultant clinical research are discussed in this article where we argue that discovery of the JAK2 V617F mutation has signalled the much delayed change in therapeutic paradigm for myelofibrosis and possibly other MPNs from palliation and allowing us to move closer to, but not yet attain, a cure.