99 resultados para mutagens


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Germ cell mutagens are currently classified into three categories in the German List of MAK- and BAT-Values. These categories have been revised and extended in analogy to the new categories for carcinogenic chemicals. Germ cell mutagens produce heritable gene mutations, and heritable structural and numerical chromosome aberrations in germ cells. The original categories 1 and 2 for germ cell mutagens remained unchanged. Two new categories 3 A and 3 B are proposed for chemicals which are suspected to be germ cell mutagens. A new category 5 is proposed for germ cell mutagens with low potency which contribute negligibly to human genetic risk provided the MAK value is observed. The following categories are presented for further discussion. 1. Germ cell mutagens which have been shown to increase the mutant frequency among the progeny of exposed humans. 2. Germ cell mutagens which have been shown to increase the mutant frequency among the progeny of exposed animals. 3 A. Substances which have been shown to induce genetic damage in germ cells of humans or animals, or which are mutagenic in somatic cells and have been shown to reach the germ cells in their active forms. 3 B. Substances which are suspected of being germ cell mutagens because of their genotoxic effects in mammalian somatic cells in vivo or, in exceptional cases in the absence of in vivo data, if they are clearly mutagenic in vitro and structurally related to in vivo mutagens. 4. not applicable (Category 4 was introduced for carcinogenic substances with nongenotoxic modes of action. By definition, germ cell mutagens are genotoxic. Therefore, a Category 4 for germ cell mutagens cannot exist.) 5. Germ cell mutagens, the potency of which is considered to be so low that, provided the MAK value is observed, their contribution to genetic risk is expected not to be significant.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Testing for mutagenicity and carcinogenicity has become an integral part of the toxicological evaluation of drugs and chemicals. Standard carcinogenicity tests in vivo require both large numbers of animals and prolonged experiments. To circumvent these problems, several rapid tests have been developed for preliminary screening of mutagens and carcinogens in vitro. Ames and his associates, the first to develop a mutation test, used mutant strains of Salmonella typhimurium [1]. Mutation tests with Escherichia coli, Bacillus subtilis, Neurospora crassa and Saccharomyces cerevisiae, and DNA-repair tests with E. coli and B. subtilis, have been developed. Cytogenetic assays, in vivo as well as in vitro, in both plant and animal systems, are also used to detect potential mutagens and carcinogens. Transfection is inhibited by base mutation, cleavage of DNA, loss of cohesive ends, interaction with histones, spermidine, nalidixic acid, etc. [3]. The efficiency of transfection is affected by temperature, DNA structure and the condition of the competence of the recipient cells [3]. Transfection assays with phages MS: RNA and ~i, x 174-DNA have been reported [15]. A fast and easy transfection assay using colitis bacteriophage DNA is reported in this communication.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The effect of lasers of three wavelengths in the visible region - 476, 488 and 514 nm on mitotic and meiotic cell divisions, growth, yield and activity of specific enzymes were studied in two taxonomically diverse plant species — A/lium cepa L. and Vicia faba. The effect of laser exposures was compared with the effect of two physical mutagens (Gamma and Ultraviolet radiations) and two chemical mutagens (Ethyl Methane Sulphonate and Hydroxyl amine). The study indicated that lasers could be mutagenic causing aberration in the mitotic and meiotic cell divisions while also producing changes in the growth and yield of the plants. Lasers of higher wavelengths 488 and 514 nm caused aberrations in the early stages of mitotic cell division whereas lasers of lower wavelengths (476 nm) caused more aberrations in the later stages of mitotic cell division. Laser exposure of 488 nm wavelength at power density 400 mW induced higher mitotic and meiotic aberrations and also induced higher pollen sterility than lasers of 476 and 514 nm. The frequency of mitotic aberrations induced by lasers was lesser than that caused by y-irradiation but comparable to that induced by EMS and HA. Lasers cause mutations in higher frequencies than UV. Lasers had a stimulatory effect on growth and yield in both plant species. This stimulatory effect of lasers on germination could not however be correlated to the activity of amylase and protease, the key enzymes in seed gennination. Enzymes such as peroxidase and catalase, involved in scavenging of free oxygen radicals often produced by irradiation, did not show increased activity in laser irradiated samples. Further studies are required for elucidating the exact mechanisms by which lasers cause mutations

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The antimutagenic effect of ethanolic extract of propolis (EEP) and honeybee (Apis mellifera) venom, both collected in the State of Sb Paulo, Brazil, was assessed by the Salmonella/microsome assay upon direct- and indirect-acting mutagens. EEP had inhibitory effect (in an ascending order) on the mutagenicity power of daunomycin (TA102), benzo(a)pyrene (TA100), and aflatoxin B-1(TA98) and the venom acted against the mutagenicity of 4-nitro-o-phenylenediamine (TA98) and daunomycin (TA102). (C) 1999 Wiley-Liss, Inc.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A major mission for organizing the series of International Conferences on Environmental Mutagens in Human Populations is to bring science and scientists to the sites where the field of environmental health is in developmental stages and environmental health is a serious concern. The mission has been fulfilled in each of the previous conferences that were held in Egypt, Czech Republic, Thailand and Brazil. These conferences have led to significant enhancement of regional scientific expertise from the acquisition of scientific knowledge and from the generation of sustainable collaborative programs. (C) 2003 Elsevier B.V. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Byrsonima basiloba A. Juss. species is a native arboreal type from the Brazilian cerrado (tropical American savanna), and the local population uses it to treat diseases, such as diarrhea and gastric ulcer. It belongs to the Malpighiaceae family, and it is commonly known as murici. Considering the popular use of B. basiloba derivatives and the lack of pharmacological potential studies regarding this vegetal species, the mutagenic and antimutagenic effect of methanol (MeOH) and chloroform extracts were evaluated by the Ames test, using strains TA97a, TA98, TA100, and TA102 of Salmonella typhimurium. No mutagenic activity was observed in any of the extracts. To evaluate the antimutagenic potential, direct and indirect mutagenic agents were used: 4 nitro-o-phenylenediamine, sodium azide, mitomycin C, aflatoxin B1, benzo[a]pyrene, and hydrogen peroxide. Both the extracts evaluated showed antimutagenic activity, but the highest value of inhibition level (89%) was obtained with the MeOH extract and strain TA100 in the presence of aflatoxin B1. Phytochemical analysis of the extracts revealed the presence of n-alkanes, lupeol, ursolic and oleanolic acid, (+)-catechin, quercetin-3-O-α-L-arabinopyranoside, gallic acid, methyl gallate, amentoflavone, quercetin, quercetin-3-O-(2″-O-galloyl)-β-D- galactopyranoside, and quercetin-3-O-(2″-O-galloyl)-α-L- arabinopyranoside. © 2008 Mary Ann Liebert, Inc.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Isoflavones are phenolic compounds widely distributed in plants and found in a high percentage in soybeans. They have important biological properties and are regarded as potential chemopreventive agents. The aim of this study was to verify the preventive effect of two soy isoflavones (genistein and daidzein) by a micronucleus assay, analysis of GST activity, and real-time RT-PCR analysis of GSTa2 gene expression. Mutagens of direct (doxorubicin) and indirect (2-aminoanthracene) DNA damage were used. Hepatoma cells (HTC) were treated with genistein or daidzein for 26 h at noncytotoxic concentrations; 10 μM when alone, and 0.1, 1.0 and 10 μM when combined with genotoxic agents. The micronucleus test demonstrated that both isoflavones alone had no genotoxic effect. Genistein showed antimutagenic effects at 10 μM with both direct and indirect DNA damage agents. On phase II enzyme regulation, the current study indicated an increase in total cytoplasmic GST activity in response to genistein and daidzein at 10 μM supplementation. However, the mRNA levels of GSTa2 isozymes were not differentially modulated by genistein or daidzein. The results point to an in vitro antimutagenic activity of genistein against direct and indirect DNA damage-induced mutagenicity. © 2012 Springer Science+Business Media B.V.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

While researchers have extensively evaluated the beneficial effects of coffee consumption in reducing the frequency of certain diseases, studies examining the differences between organic and conventional coffee intake are still needed. Therefore, this paper aims to investigate the functional effects of organic and conventional coffee by examining both its chemical composition and its mutagenic/antimutagenic properties. Infusions of 10% or 20% (w/v) of organic and conventional coffee were administered by gavage (10 mL/kg b.w., once or twice a day) to male Swiss mice against doxorubicin (DXR) and 1,2-dimethylhydrazine dihydrochloride (DMH)-induced mutagenicity. The levels of chlorogenic acids, caffeine and trigonelline from the coffee infusions and oxidative stress analysis from the liver were measured by HPLC. Gut and bone marrow micronucleus assays were used as mutagenic/antimutagenic endpoints, as well as the crypt measurements and gut apoptosis index. The in vivo tests revealed that only organic coffee exerted protective effects, despite oxidative stress analysis and crypt measurements not showing differences among treatments. Intriguingly, the low dose (10% w/v mL/kg) displayed a robust protective effect that showed a significant reduction in bone marrow micronuclei (26.8%), gut micronuclei (11.5%) and apoptosis (27.8%), whereas the higher coffee dose (2 × 20% w/v) only showed a protective effect against bone marrow micronucleus (43.7%). These results highlight that organic coffee could be considered to have beneficial functional effects, although it is still a challenge to define conclusions from analytical data and all the possible interactions from this complex food matrix. © 2013 Elsevier Ltd. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The mutagen-sensitive CHO line irs1SF was previously isolated on the basis of hypersensitivity to ionizing radiation and was found to be chromosomally unstable as well as cross-sensitive to diverse kinds of DNA-damaging agents. The analysis of somatic cell hybrids formed between irs1SF and human lymphocytes implicated a human gene (defined as XRCC3; x-ray repair cross-complementing), which partially restored mitomycin C resistance to the mutant. A functional cDNA that confers mitomycin C resistance was transferred to irs1SF cells by transforming them with an expression cDNA library and obtaining primary and secondary transformants. Functional cDNA clones were recovered from a cosmid library prepared from a secondary transformant. Transformants also showed partial correction of sensitivity to cisplatin and gamma-rays, efficient correction of chromosomal instability, and substantially improved plating efficiency and growth rate. The XRCC3 cDNA insert is approximately 2.5 kb and detects an approximately 3.0-kb mRNA on Northern blots. The cDNA was mapped by fluorescence in situ hybridization to human chromosome 14q32.3, which was consistent with the chromosome concordance data of two independent hybrid clone panels.