992 resultados para music generation
Resumo:
This paper discusses a method, Generation in Context, for interrogating theories of music analysis and music perception. Given an analytic theory, the method consists of creating a generative process that implements the theory in reverse. Instead of using the theory to create analyses from scores, the theory is used to generate scores from analyses. Subjective evaluation of the quality of the musical output provides a mechanism for testing the theory in a contextually robust fashion. The method is exploratory, meaning that in addition to testing extant theories it provides a general mechanism for generating new theoretical insights. We outline our initial explorations in the use of generative processes for music research, and we discuss how generative processes provide evidence as to the veracity of theories about how music is experienced, with insights into how these theories may be improved and, concurrently, provide new techniques for music creation. We conclude that Generation in Context will help reveal new perspectives on our understanding of music.
Resumo:
This paper presents a brief history of the western music: from its genesis to serialism and the Darmstadt school. Also some mathematical aspects of music are then presented and confronted with music as a form of art. The question is, are these two distinct aspects compatible? Can computers be of real help in automatic composition? The more appealing algorithmic approach is evolutionary computation as it offers creativity potential. Therefore, the Evolutionary Algorithms are then introduced and some results of GAs and GPs application to music generation are analysed.
Resumo:
The feedback mechanism used in a brain-computer interface (BCI) forms an integral part of the closed-loop learning process required for successful operation of a BCI. However, ultimate success of the BCI may be dependent upon the modality of the feedback used. This study explores the use of music tempo as a feedback mechanism in BCI and compares it to the more commonly used visual feedback mechanism. Three different feedback modalities are compared for a kinaesthetic motor imagery BCI: visual, auditory via music tempo, and a combined visual and auditory feedback modality. Visual feedback is provided via the position, on the y-axis, of a moving ball. In the music feedback condition, the tempo of a piece of continuously generated music is dynamically adjusted via a novel music-generation method. All the feedback mechanisms allowed users to learn to control the BCI. However, users were not able to maintain as stable control with the music tempo feedback condition as they could in the visual feedback and combined conditions. Additionally, the combined condition exhibited significantly less inter-user variability, suggesting that multi-modal feedback may lead to more robust results. Finally, common spatial patterns are used to identify participant-specific spatial filters for each of the feedback modalities. The mean optimal spatial filter obtained for the music feedback condition is observed to be more diffuse and weaker than the mean spatial filters obtained for the visual and combined feedback conditions.
Resumo:
Dynamic soundtracking presents various practical and aesthetic challenges to composers working with games. This paper presents an implementation of a system addressing some of these challenges with an affectively-driven music generation algorithm based on a second order Markov-model. The system can respond in real-time to emotional trajectories derived from 2-dimensions of affect on the circumplex model (arousal and valence), which are mapped to five musical parameters. A transition matrix is employed to vary the generated output in continuous response to the affective state intended by the gameplay.
Resumo:
iGrooving is a generative music mobile application specifically designed for runners. The application’s foundation is a step-counter that is programmed using the iPhone’s built-in accelerometer. The runner’s steps generate the tempo of the performance by mapping each step to trigger a kick-drum sound file. Additionally, different sound files are triggered at specific step counts to generate the musical performance, allowing the runner a level of compositional autonomy. The sonic elements are chosen to promote a meditative aspect of running. iGrooving is conceived as a biofeedback-stimulated musical instrument and an environment for creating generative music processes with everyday technologies, inspiring us to rethink our everyday notions of musical performance as a shared experience. Isolation, dynamic changes, and music generation are detailed to show how iGrooving facilitates novel methods for music composition, performance and audience participation.
Resumo:
Genetic Algorithms (GAs) are recognized as an alternative class of computational model, which mimic natural evolution to solve problems in a wide domain including machine learning, music generation, genetic synthesis etc. In the present study Genetic Algorithm has been employed to obtain damage assessment of composite structural elements. It is considered that a state of damage can be modeled as reduction in stiffness. The task is to determine the magnitude and location of damage. In a composite plate that is discretized into a set of finite elements, if a jth element is damaged, the GA based technique will predict the reduction in Ex and Ey and the location j. The fact that the natural frequency decreases with decrease in stiffness is made use of in the method. The natural frequency of any two modes of the damaged plates for the assumed damage parameters is facilitated by the use of Eigen sensitivity analysis. The Eigen value sensitivities are the derivatives of the Eigen values with respect to certain design parameters. If ωiu is the natural frequency of the ith mode of the undamaged plate and ωid is that of the damaged plate, with δωi as the difference between the two, while δωk is a similar difference in the kth mode, R is defined as the ratio of the two. For a random selection of Ex,Ey and j, a ratio Ri is obtained. A proper combination of Ex,Ey and j which makes Ri−R=0 is obtained by Genetic Algorithm.
Resumo:
This paper presents a method to generate new melodies, based on conserving the semiotic structure of a template piece. A pattern discovery algorithm is applied to a template piece to extract significant segments: those that are repeated and those that are transposed in the piece. Two strategies are combined to describe the semiotic coherence structure of the template piece: inter-segment coherence and intra-segment coherence. Once the structure is described it is used as a template for new musical content that is generated using a statistical model created from a corpus of bertso melodies and iteratively improved using a stochastic optimization method. Results show that the method presented here effectively describes a coherence structure of a piece by discovering repetition and transposition relations between segments, and also by representing the relations among notes within the segments. For bertso generation the method correctly conserves all intra and inter-segment coherence of the template, and the optimization method produces coherent generated melodies.
Resumo:
Generative music algorithms frequently operate by making musical decisions in a sequence, with each step of the sequence incorporating the local musical context in the decision process. The context is generally a short window of past musical actions. What is not generally included in the context is future actions. For real-time systems this is because the future is unknown. Offline systems also frequently utilise causal algorithms either for reasons of efficiency [1] or to simulate perceptual constraints [2]. However, even real-time agents can incorporate knowledge of their own future actions by utilising some form of planning. We argue that for rhythmic generation the incorporation of a limited form of planning - anticipatory timing - offers a worthwhile trade-off between musical salience and efficiency. We give an example of a real-time generative agent - the Jambot - that utilises anticipatory timing for rhythmic generation. We describe its operation, and compare its output with and without anticipatory timing.
Resumo:
We have developed a new experimental method for interrogating statistical theories of music perception by implementing these theories as generative music algorithms. We call this method Generation in Context. This method differs from most experimental techniques in music perception in that it incorporates aesthetic judgments. Generation In Context is designed to measure percepts for which the musical context is suspected to play an important role. In particular the method is suitable for the study of perceptual parameters which are temporally dynamic. We outline a use of this approach to investigate David Temperley’s (2007) probabilistic melody model, and provide some provisional insights as to what is revealed about the model. We suggest that Temperley’s model could be improved by dynamically modulating the probability distributions according to the changing musical context.
Resumo:
This paper describes algorithms that can musically augment the realtime performance of electronic dance music by generating new musical material by morphing. Note sequence morphing involves the algorithmic generation of music that smoothly transitions between two existing musical segments. The potential of musical morphing in electronic dance music is outlined and previous research is summarised; including discussions of relevant music theoretic and algorithmic concepts. An outline and explanation is provided of a novel Markov morphing process that uses similarity measures to construct transition matrices. The paper reports on a ‘focus-concert’ study used to evaluate this morphing algorithm and to compare its output with performances from a professional DJ. Discussions of this trial include reflections on some of the aesthetic characteristics of note sequence morphing. The research suggests that the proposed morphing technique could be effectively used in some electronic dance music contexts.