971 resultados para muscle inflammatory response


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Oxidative stress and inflammatory processes strongly contribute to pathogenesis in Duchenne muscular dystrophy (DMD). Based on evidence that excess iron may increase oxidative stress and contribute to the inflammatory response, we investigated whether deferoxamine (DFX), a potent iron chelating agent, reduces oxidative stress and inflammation in the diaphragm (DIA) muscle of mdx mice (an experimental model of DMD). Fourteen-day-old mdx mice received daily intraperitoneal injections of DFX at a dose of 150 mg/kg body weight, diluted in saline, for 14 days. C57BL/10 and control mdx mice received daily intraperitoneal injections of saline only, for 14 days. Grip strength was evaluated as a functional measure, and blood samples were collected for biochemical assessment of muscle fiber degeneration. In addition, the DIA muscle was removed and processed for histopathology and Western blotting analysis. In mdx mice, DFX reduced muscle damage and loss of muscle strength. DFX treatment also resulted in a significant reduction of dystrophic inflammatory processes, as indicated by decreases in the inflammatory area and in NF-κB levels. DFX significantly decreased oxidative damage, as shown by lower levels of 4-hydroxynonenal and a reduction in dihydroethidium staining in the DIA muscle of mdx mice. The results of the present study suggest that DFX may be useful in therapeutic strategies to ameliorate dystrophic muscle pathology, possibly via mechanisms involving oxidative and inflammatory pathways.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Quercetin is a potent anti-inflammatory flavonoid, but its capacity to modulate insulin sensitivity in obese insulin resistant conditions is unknown. This study investigated the effect of quercetin treatment upon insulin sensitivity of ob/ob mice and its potential molecular mechanisms. Obese ob/ob mice were treated with quercetin for 10 weeks, and L6 myotubes were treated with either palmitate or tumor necrosis factor-alpha (TNF alpha) plus quercetin. Cells and muscles were processed for analysis of glucose transporter 4 (GLUT4), TNF alpha and inducible nitric oxide synthase (iNOS) expression, and c-Jun N-terminal kinase (JNK) and inhibitor of nuclear factor-kappa B (NF-kappa B) kinase (I kappa K) phosphorylation. Myotubes were assayed for glucose uptake and NF-kappa B translocation. Chromatin immunoprecipitation assessed NF-kappa B binding to GLUT4 promoter. Quercetin treatment improved whole body insulin sensitivity by increasing GLUT4 expression and decreasing JNK phosphorylation, and TNF alpha and iNOS expression in skeletal muscle. Quercetin suppressed palmitate-induced upregulation of TNF alpha and iNOS and restored normal levels of GLUT4 in myotubes. In parallel, quercetin suppressed TNF alpha-induced reduction of glucose uptake in myotubes. Nuclear accumulation of NF-kappa B in myotubes and binding of NF-kappa B to GLUT4 promoter in muscles of ob/ob mice were also reduced by quercetin. We demonstrated that quercetin decreased the inflammatory status in skeletal muscle of obese mice and in L6 myotubes. This effect was followed by increased muscle GLUT4, with parallel improvement of insulin sensitivity. These results point out quercetin as a putative strategy to manage inflammatory-related insulin resistance. (C) 2012 Elsevier B.V. All rights reserved.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Background and Objective Muscle regeneration is a complex phenomenon, involving coordinated activation of several cellular responses. During this process, oxidative stress and consequent tissue damage occur with a severity that may depend on the intensity and duration of the inflammatory response. Among the therapeutic approaches to attenuate inflammation and increase tissue repair, low-level laser therapy (LLLT) may be a safe and effective clinical procedure. The aim of this study was to evaluate the effects of LLLT on oxidative/nitrative stress and inflammatory mediators produced during a cryolesion of the tibialis anterior (TA) muscle in rats. Material and Methods Sixty Wistar rats were randomly divided into three groups (n?=?20): control (BC), injured TA muscle without LLLT (IC), injured TA muscle submitted to LLLT (IRI). The injured region was irradiated daily for 4 consecutive days, starting immediately after the lesion using a AlGaAs laser (continuous wave, 808?nm, tip area of 0.00785?cm2, power 30?mW, application time 47?seconds, fluence 180?J/cm2; 3.8?mW/cm2; and total energy 1.4?J). The animals were sacrificed on the fourth day after injury. Results LLLT reduced oxidative and nitrative stress in injured muscle, decreased lipid peroxidation, nitrotyrosine formation and NO production, probably due to reduction in iNOS protein expression. Moreover, LLLT increased SOD gene expression, and decreased the inflammatory response as measured by gene expression of NF-k beta and COX-2 and by TNF-a and IL-1 beta concentration. Conclusion These results suggest that LLLT could be an effective therapeutic approach to modulate oxidative and nitrative stress and to reduce inflammation in injured muscle. Lasers Surg. Med. 44: 726735, 2012. (c) 2012 Wiley Periodicals, Inc.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Cytokines (IL-6, IL-10, and TNF-alpha) are increased after exhaustive exercise in the retroperitoneal adipose tissue (RPAT) and mesenteric adipose tissue (MEAT). An exhaustive acute exercise protocol induces inflammation in adipose tissue that lasts 6 h after the exercise has ended. It is well-established that this protocol increases circulating plasma levels of non-esterified fatty acids (NEFAs) and lipopolysaccharides (LPS), compounds that are important in stimulating signaling via toll like receptor-4 (TLR-4) in different type cells. In the present study, we investigated the regulation of TLR-4 and DNA-binding of nuclear factor-kappa Bp65 (NF-kappa Bp65) in different depots of adipose tissue in rats after exhaustive exercise. Rats were killed by decapitation immediately (E0 group, n = 6), 2 (E2 group, n = 6), and 6 h (E6 group, n = 6) after the exhaustive exercise, which consisted of running on a treadmill (approximately 70% V(O2max)) for 50 min and then running at an elevated rate that increased at 1 m/min, until exhaustion. The control group (C group, n = 6) was not subjected to exercise. In RPAT, TLR-4, MYD-88, and IkB alpha increased in the E2 group after exercise. MYD-88 and TRAF6 remained increased in the E6 group in comparison with the control group. DNA-binding of NF-kappa Bp65 was not altered. In MEAT, TLR-4, MYD-88, TRAF6, and DNA-binding of NF-kappa Bp65 were increased only in the E6 group. In conclusion, we have shown that increases in pro-inflammatory cytokines in adipose tissue pads after exhaustive exercise may be mediated via TLR-4 signaling, leading to increases in NF-kappa Bp65 binding to DNA in MEAT. J. Cell. Physiol. 226: 1604-1607, 2011. (C) 2010 Wiley-Liss, Inc.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Symptoms evoked by Thalassophryne nattereri fish envenomation include local oedema, severe pain and intense necrosis with strikingly inefficient healing, continuing for several weeks or months. Investigations carried out in our laboratory showed that, in the venom-induced acute inflammation, thrombosis in venules and constrictions in arterioles were highly visible, in contrast to a notable lack of inflammatory cell. Nevertheless, the reason that the venom toxins favour delayed local inflammatory response is poorly defined. In this study, we analysed the movement of leucocytes after T. nattereri venom injection in the intraplantar region of Swiss mice, the production of pro-inflammatory mediators and the venom potential to elicit matrix metalloproteinase production and extracellular matrix degradation. Total absence of mononuclear and neutrophil influx was observed until 14 days, but the venom stimulates pro-inflammatory mediator secretion. Matrix metalloproteinases (MMP)-2 and MMP-9 were detected in greater quantities, accompanied by tissue degradation of collagenous fibre. An influx of mononuclear cells was noted very late and at this time the levels of IL-6, IL-1 beta and MMP-2 remained high. Additionally, the action of venom on the cytoskeletal organization was assessed in vitro. Swift F-actin disruption and subsequent loss of focal adhesion was noted. Collectively these findings show that the altered specific interaction cell-matrix during the inflammatory process creates an inadequate environment for infiltration of inflammatory cells.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)

Relevância:

100.00% 100.00%

Publicador:

Resumo:

de Moura, NR, Cury-Boaventura, MF, Santos, VC, Levada-Pires, AC, Bortolon, JR, Fiamoncini, J, Pithon-Curi, TC, Curi, R, and Hatanaka, E. Inflammatory response and neutrophil functions in players after a futsal match. J Strength Cond Res 26(9): 2507-2514, 2012-Futsal players suffer injuries resulting from muscle fatigue and contact or collision among players. Muscle lesions can be detected by measuring muscle lesion markers such as creatine kinase (CK) and lactate dehydrogenase (LDH) in plasma. After an initial lesion, there is an increase in the plasma levels of C-reactive protein (CRP) and proinflammatory cytokines. These mediators may activate neutrophils and contribute to tissue damage and increase susceptibility to invasive microorganisms. In this study, we investigated the effect of a futsal match on muscle lesion markers, cytokines, and CRP in elite players. The basal and stimulated neutrophil responsiveness after a match was also evaluated based on measurements of neutrophil necrosis, apoptosis, phagocytic capacity, reactive oxygen species (ROS) production, and cytokines (tumor necrosis factor-alpha [TNF-alpha], interleukin [IL]-8, IL-1 beta, IL-10, and IL-1ra) production. Blood samples were taken from 16 players (26.4 +/- 3.2 years, 70.2 +/- 6.9 kg, 59.7 +/- 5.1 ml.kg(-1).min(-1), sports experience of 4.4 +/- 0.9 years) before and immediately after a match. Exercise increased the serum activities of CK (2.5-fold) and LDH (1.3-fold). Playing futsal also increased the serum concentrations of IL-6 (1.6-fold) and CRP (1.6-fold). The TNF-alpha, IL-1 beta, IL-8, IL-1ra, and IL-10 serum levels were not modified in the conditions studied. The futsal match induced neutrophil apoptosis, as indicated by phosphatidylserine externalization (6.0-fold). The exercise induced priming of neutrophils by increasing ROS (1.3-fold), TNF-alpha (5.8-fold), and IL-1 beta (4.8-fold) released in nonstimulated cells. However, in the stimulated condition, the exercise decreased neutrophil function, diminishing the release of ROS by phorbol myristate acetate-stimulated neutrophils (1.5-fold), and the phagocytic capacity (1.6-fold). We concluded that playing futsal induces inflammation, primes and activates neutrophils, and reduces the efficiency of neutrophil phagocytosis immediately after a match.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

It has been previously shown that besides its classical role in blood pressure control the reninangiotensin system, mainly by action of angiotensin II on the AT1 receptor, exerts pro-inflammatory effects such as by inducing the production of cytokines. More recently, alternative pathways to this system were described, such as binding of angiotensin-(17) to receptor Mas, which was shown to counteract some of the effects evoked by activation of the angiotensin IIAT1 receptor axis. Here, by means of different molecular approaches we investigated the role of angiotensin-(17) in modulating inflammatory responses triggered in mouse peritoneal macrophages. Our results show that receptor Mas transcripts were up-regulated by eightfold in LPS-induced macrophages. Interestingly, macrophage stimulation with angiotensin-(17), following to LPS exposure, evoked an attenuation in expression of TNF-a and IL-6 pro-inflammatory cytokines; where this event was abolished when the receptor Mas selective antagonist A779 was also included. We then used heterologous expression of the receptor Mas in HEK293T cells to search for the molecular mechanisms underlying the angiotensin-(17)-mediated anti-inflammatory responses by a kinase array; what suggested the involvement of the Src kinase family. In LPS-induced macrophages, this finding was corroborated using the PP2 compound, a specific Src kinase inhibitor; and also by Western blotting when we observed that Ang-(17) attenuated the phosphorylation levels of Lyn, a member of the Src kinase family. Our findings bring evidence for an anti-inflammatory role for angiotensin-(17) at the cellular level, as well as show that its probable mechanism of action includes the modulation of Src kinases activities. J. Cell. Physiol. 227: 21172122, 2012. (C) 2011 Wiley Periodicals, Inc.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Airway smooth muscle constriction induced by cholinergic agonists such as methacholine (MCh), which is typically increased in asthmatic patients, is regulated mainly by muscle muscarinic M3 receptors and negatively by vagal muscarinic M2 receptors. Here we evaluated basal (intrinsic) and allergen-induced (extrinsic) airway responses to MCh. We used two mouse lines selected to respond maximally (AIRmax) or minimally (AIRmin) to innate inflammatory stimuli. We found that in basal condition AIRmin mice responded more vigorously to MCh than AIRmax. Treatment with a specific M2 antagonist increased airway response of AIRmax but not of AIRmin mice. The expression of M2 receptors in the lung was significantly lower in AIRmin compared to AIRmax animals. AIRmax mice developed a more intense allergic inflammation than AIRmin, and both allergic mouse lines increased airway responses to MCh. However, gallamine treatment of allergic groups did not affect the responses to MCh. Our results confirm that low or dysfunctional M2 receptor activity is associated with increased airway responsiveness to MCh and that this trait was inherited during the selective breeding of AIRmin mice and was acquired by AIRmax mice during allergic lung inflammation

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Background Activation of the endothelium, complement activation and generation of cytokines are known events during ischemia-reperfusion (I/R) that mediate tissue injury. Our aim was to elucidate their respective participation at the onset of the reperfusion phase. Tourniquet application in hand surgery causes short-term ischemia, followed by reperfusion and was therefore used as the model in this study. Methods Ten patients were included in the study after obtaining informed consent. A tourniquet was placed on the upper arm and inflated to 250 mmHg for 116 ± 16 min, during which the surgery was performed. Venous blood and tissue samples from the surgical area were taken at baseline as well as 0, 2, and 10 min after reperfusion and analyzed for the following parameters: Endothelial integrity and/or activation were analyzed by measuring heparan sulfate and syndecan-1 in serum, and vWF, heparan sulfate proteoglycan as well as CD31on tissue. Complement activation was determined by C3a and C4d levels in plasma, levels of C1-inhibitor in serum, and IgG, IgM, C3b/c, and C4b/c deposition on tissue. Cytokines and growth factors IL-5, IL-6, IL-7, IL-8, IL-10, IL-17, G-CSF, GM-CSF, MCP-1, TNFα, VEGF, and PDGF bb were measured in the serum. Finally, CK-MM levels were determined in plasma as a measure for muscle necrosis. Results Markers for endothelial activation and/or integrity as well as complement activation showed no significant changes until 10 min reperfusion. Among the measured cytokines, IL-6, IL-7, IL-17, TNFα, GM-CSF, VEGF, and PDGF bb were significantly increased at 10 min reperfusion with respect to baseline. CK-MM showed a rise from baseline at the onset of reperfusion (p < 0.001) and dropped again at 2 min (p < 0.01) reperfusion, suggesting ischemic muscle damage. Conclusions In this clinical model of I/R injury no damage to the endothelium, antibody deposition or complement activation were observed during early reperfusion. However, an increase of pro-inflammatory cytokines and growth factors was shown, suggesting a contribution of these molecules in the early stages of I/R injury.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

PURPOSE: This study evaluated the inflammatory reaction caused by the implantation of iodoform and calcium hydroxide in the back of rats. These drugs may be used as intracanal dressings to eliminate residual bacteria of the root canal system. METHODS: Twenty albinic rats (Rattus norvegicus, var Wistar) were divided into four groups: control group 1 (CG1) had normal skin; control group 2 (CG2) had wounded tissue without drugs; in groups 3 and 4, iodoform (IG) and calcium hydroxide (CHG) were inserted into the wounds, respectively. After 3, 5 and 11 days, slices of the implanted areas were macroscopically and microscopically observed regarding to their qualitative and quantitative aspects. RESULTS: In the macroscopical analysis, the CHG showed a large area of necrosis and swelling, which progressively decreased; in the IG the presence of iodoform surrounded by normal tissue was observed. The qualitative and quantitative histological analysis showed that IG promoted a shorter delay in the inflammatory response than the CHG. CONCLUSION: The inflammatory reaction for iodoform had a peak period five days after the drug insertion. By comparison, calcium hydroxide showed a very large area of necrosis that could only be partially eliminated after eleven days.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The aim of this study was to evaluate the inflammatory response kinetics after experimental inoculation with BCG in the primitive Arius sp. fish. The BCG was applied through the intramuscular injection in the caudal peduncular region, and the samples were collected for the analyses at days 1, 3, 7, 14, 21, and 33 post-injection. Acute phase inflammatory infiltrate was characterized by the predominant mononuclear cells, intersticial edema, and muscular tissue necrosis. As the inflammatory response evolved, a large number of multinuclear giant cells were formed containing the BCG. These giant cells were positive for the S100 protein at the histochemical analysis, which demonstrate the macrofage activity, confirmed by the ultra-structural analysis showing the lack of the cytoplasmic membrane enveloping the many nuclei within the giant cell. These results led to the conclusion that Arius sp. fish injected with the BCG showed a difuse inflammatory response characterized by a large number of mononuclear cells, absence of granuloma formation, and predominant giant cells.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Background: The beneficial actions of exercise training on lipid, glucose and energy metabolism and insulin sensitivity appear to be in part mediated by PGC-1 alpha. Previous studies have shown that spontaneously exercised rats show at rest enhanced responsiveness to exogenous insulin, lower plasma insulin levels and increased skeletal muscle insulin sensitivity. This study was initiated to examine the functional interaction between exercise-induced modulation of skeletal muscle and liver PGC-1 alpha protein expression, whole body insulin sensitivity, and circulating FFA levels as a measure of whole body fatty acid (lipid) metabolism. Methods: Two groups of male Wistar rats (2 Mo of age, 188.82 +/- 2.77 g BW) were used in this study. One group consisted of control rats placed in standard laboratory cages. Exercising rats were housed individually in cages equipped with running wheels and allowed to run at their own pace for 5 weeks. At the end of exercise training, insulin sensitivity was evaluated by comparing steady-state plasma glucose (SSPG) concentrations at constant plasma insulin levels attained during the continuous infusion of glucose and insulin to each experimental group. Subsequently, soleus and plantaris muscle and liver samples were collected and quantified for PGC-1 alpha protein expression by Western blotting. Collected blood samples were analyzed for glucose, insulin and FFA concentrations. Results: Rats housed in the exercise wheel cages demonstrated almost linear increases in running activity with advancing time reaching to maximum value around 4 weeks. On an average, the rats ran a mean (Mean +/- SE) of 4.102 +/- 0.747 km/day and consumed significantly more food as compared to sedentary controls (P < 0.001) in order to meet their increased caloric requirement. Mean plasma insulin (P < 0.001) and FFA (P < 0.006) concentrations were lower in the exercise-trained rats as compared to sedentary controls. Mean steady state plasma insulin (SSPI) and glucose (SSPG) concentrations were not significantly different in sedentary control rats as compared to exercise-trained animals. Plantaris PGC-1 alpha protein expression increased significantly from a 1.11 +/- 0.12 in the sedentary rats to 1.74 +/- 0.09 in exercising rats (P < 0.001). However, exercise had no effect on PGC-1 alpha protein content in either soleus muscle or liver tissue. These results indicate that exercise training selectively up regulates the PGC-1 alpha protein expression in high-oxidative fast skeletal muscle type such as plantaris muscle. Conclusion: These data suggest that PGC-1 alpha most likely plays a restricted role in exercise-mediated improvements in insulin resistance (sensitivity) and lowering of circulating FFA levels.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Background: Visceral leishmaniasis in Brazil is caused by the protozoan Leishmania (Leishmania) chagasi and it is transmitted by sandfly of the genus Lutzomyia. Dogs are an important domestic reservoir, and control of the transmission of visceral leishmaniasis (VL) to humans includes the elimination of infected dogs. However, though dogs are considered to be an important element in the transmission cycle of Leishmania, the identification of infected dogs representing an immediate risk for transmission has not been properly evaluated. Since it is not possible to treat infected dogs, they are sacrificed when a diagnosis of VL is established, a measure that is difficult to accomplish in highly endemic areas. In such areas, parameters that allow for easy identification of reservoirs that represents an immediate risk for transmission is of great importance for the control of VL transmission. In this study we aimed to identify clinical parameters, reinforced by pathological parameters that characterize dogs with potential to transmit the parasite to the vector. Results: The major clinical manifestations of visceral leishmaniasis in dogs from an endemic area were onicogriphosis, skin lesions, conjunctivitis, lymphadenopathy, and weight loss. The transmission potential of these dogs was assessed by xenodiagnosis using Lutzomyia longipalpis. Six of nine symptomatic dogs were infective to Lutzomyia longipalpis while none of the five asymptomatic dogs were infective to the sandfly. Leishmania amastigotes were present in the skin of all clinically symptomatic dogs, but absent in asymptomatic dogs. Higher parasite loads were observed in the ear and ungueal region, and lower in abdomen. The inflammatory infiltrate was more intense in the ears and ungueal regions of both symptomatic and asymptomatic dogs. In clinically affected dogs in which few or none Leishmania amastigotes were observed, the inflammatory infiltrate was constituted mainly of lymphocytes and macrophages. When many parasites were present, the infiltrate was also comprised of lymphocytes and macrophages, as well as a larger quantity of polymorphonuclear neutrophils (PMNs). Conclusion: Dogs that represent an immediate risk for transmission of Leishmania in endemic areas present clinical manifestations that include onicogriphosis, skin lesions, conjunctivitis, lymphadenopathy, and weight loss. Lymphadenopathy in particular was a positive clinical hallmark since it was closely related to the positive xenodiagnosis.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Signal transduction through the surface molecule CD40 is critical for cellular activation in immunoinflammatory states such as sepsis. The mechanisms regulating this pathway are not completely understood. Because CD40 displays potentially regulatory cysteine residues and CD40 is probably exposed to NO in the inflammatory milieu, we hypothesized that S-nitrosylation, the interaction of NO with cysteines residues, acts as a post-translational modification on CD40, coregulating the signaling activity and, therefore, the level of cellular activation. As assessed by the biotin switch and the reduction/chemiluminescence S-nitrosylation detection techniques, CD40 was found to be S-nitrosylated endogenously and upon exposure to NO donors in both human and murine macrophages. S-nitrosylation of CD40 was associated with milder activation by its ligand (CD40L), leading to reduced in vitro cytokine (IL-1 beta, IL-12, and TNF-alpha) production, which was reversed in the presence of inhibitors of NO synthesis. S-nitrosylated CD40 was found in resting RAW 246.7 macrophages and BALB/c mice peritoneal macrophages, turning into the denitrosylated state upon in vitro or systemic exposure, respectively, to LPS. Moreover, monocytes from patients with sepsis displayed denitrosylated CD40 in contrast to the CD40 S-nitrosylation measured in healthy individuals. Finally, in an attempt to explain how S-nitrosylation regulates CD40 activation, we demonstrate that NO affects the redistribution of CD40 on the cell surface, which is a requirement for optimal signal transduction. Our results support a novel post-translational regulatory mechanism in which the CD40 signal may be, at least in part, dependent on cellular activation-induced receptor denitrosylation.