847 resultados para muscle contractility
Resumo:
Gut motility is modulated by adrenergic mechanisms. The aim of our study was to examine mechanisms of selective adrenergic receptors in rat jejunum. Spontaneous contractile activity of longitudinal muscle strips from rat jejunum was measured in 5-ml tissue chambers. Dose-responses (six doses, 10(-7) -3 x 10(-5)M) to norepinephrine (NE, nonspecific), phenylephrine (PH, alpha1), clonidine (C, alpha2), prenalterol (PR, beta1), ritodrine (RI, beta2), and ZD7714 (ZD, beta3) were evaluated with and without tetrodotoxin (TTX, nerve blocker). NE(3 x 10(-5)M) inhibited 74 +/- 5% (mean +/- SEM) of spontaneous activity. This was the maximum effect. The same dose of RI(beta2), PH(alpha1), or ZD(beta(3)) resulted in an inhibition of only 56 +/- 5, 43 +/- 4, 33 +/- 6, respectively. The calculated concentration to induce 50% inhibition (EC50) of ZD(beta3) was similar to NE, whereas higher concentrations of PH(alpha1) or RI(beta2) were required. C(alpha2) and PR(beta1) had no effect. TTX changed exclusively the EC50 of RI from 4.4 +/- 0.2 to 2.7 +/- 0.8% (p < 0.04). Contractility was inhibited by NE (nonspecific). PH(alpha1), RI(beta2), and ZD(beta3) mimic the effect of NE. TTX reduced the inhibition by RI. Our results suggest that muscular alpha1, beta2, and beta3 receptor mechanisms mediate adrenergic inhibition of contractility in rat jejunum. beta2 mechanisms seem to involve also neural pathways.
Resumo:
Exercise training is known to promote relevant changes in the properties of skeletal muscle contractility toward powerful fibers. However, there are few studies showing the effect of a well-established exercise training protocol on Ca(2+) handling and redox status in skeletal muscles with different fiber-type compositions. We have previously standardized a valid and reliable protocol to improve endurance exercise capacity in mice based on maximal lactate steady-state workload (MLSSw). The aim of this study was to investigate the effect of exercise training, performed at MLSSw, on the skeletal muscle Ca(2+) handling-related protein levels and cellular redox status in soleus and plantaris. Male C57BL/6J mice performed treadmill training at MLSSw over a period of eight weeks. Muscle fiber-typing was determined by myosin ATPase histochemistry, citrate synthase activity by spectrophotometric assay, Ca(2+) handling-related protein levels by Western blot and reduced to oxidized glutathione ratio (GSH:GSSG) by high-performance liquid chromatography. Trained mice displayed higher running performance and citrate synthase activity compared with untrained mice. Improved running performance in trained mice was paralleled by fast-to-slow fiber-type shift and increased capillary density in both plantaris and soleus. Exercise training increased dihydropyridine receptor (DHPR) alpha 2 subunit, ryanodine receptor and Na(+)/Ca(2+) exchanger levels in plantaris and soleus. Moreover, exercise training elevated DHPR beta 1 subunit and sarcoplasmic reticulum Ca(2+)-ATPase (SERCA) 1 levels in plantaris and SERCA2 levels in soleus of trained mice. Skeletal muscle GSH content and GSH:GSSG ratio was increased in plantaris and soleus of trained mice. Taken together, our findings indicate that MLSSw exercise-induced better running performance is, in part, due to increased levels of proteins involved in skeletal muscle Ca(2+) handling, whereas this response is partially dependent on specificity of skeletal muscle fiber-type composition. Finally, we demonstrated an augmented cellular redox status and GSH antioxidant capacity in trained mice.
Resumo:
OBJECTIVE: To study the effect of propafenone on the contractile function of latissimus dorsi muscle isolated from rats in an organ chamber. METHODS: We studied 20 latissimus dorsi muscles of Wistar rats and divided them into 2 groups: group I (n=10), or control group - we studied the feasibility of muscle contractility; group II (n=10), in which the contralateral muscles were grouped - we analyzed the effect of propafenone on muscle contractility. After building a muscle ring, 8 periods of sequential 2-minute baths were performed, with intervals of preprogrammed electrical stimulation using a pacemaker of 50 stimuli/min. In group II, propafenone, at the concentration of 9.8 µg/mL, was added to the bath in period 2 and withdrawn in period 4. RESULTS: In group I, no significant depression in muscle contraction occurred up to period 5 (p>0.05). In group II, a significant depression occurred in all periods, except between the last 2 periods (p<0.05). Comparing groups I and II only in period 1, which was a standard period for both groups, we found no significant difference (p>0.05). CONCLUSION: Propafenone had a depressing effect on the contractile function of latissimus dorsi muscle isolated from rats and studied in an organ chamber.
Resumo:
AIM: The study examined the effects of an oral acute administration of the beta2-agonist salbutamol (Sal) (6 mg) vs. placebo on muscle strength and fatigability in 12 non-asthmatic recreational male athletes in a randomized double-blind protocol. METHODS: Contractile properties of the right quadriceps muscle were measured during electrical stimulations, i.e. twitch, 1-s pulse trains at 20 (P(20) ) and 80 Hz (P(80) ) and during maximal voluntary isometric contraction (MVIC) before (PRE) and after (POST) a fatigue-producing protocol set by an electromyostimulation (30 contractions, frequency: 75 Hz, on-off ratio: 6.25-20s). In addition, the level of muscle voluntary activation was measured. RESULTS: In PRE and POST conditions, the peak torque (PT) of twitch, P(80) and MVIC were not modified by the treatment. The PT in POST P(20) was slightly, although not significantly, less affected by fatigue in Sal compared with placebo condition. Moreover, twitch half-relaxation time at PRE was smaller under Sal than under placebo (P < 0.05). No significant changes in the degree of voluntary activation were observed with Sal treatment in PRE or POST condition. CONCLUSION: Although these findings did not exclude completely an effect of Sal on peripheral factors of human skeletal muscle, oral acute administration of the beta2-agonist Sal seems to be without any relevant ergogenic effect on muscle contractility and fatigability in non-asthmatic recreational male athletes.
Resumo:
Les ß2-agonistes sont des bronchodilatateurs qui sont prescrits pour traiter l'asthme et l'asthme induite par l'exercice (AIE). Il est relevant de comprendre s'il y a une utilisation adéquate de ces médicaments pour traiter l'AIE chez les athlètes de haut niveau, ou s'ils sont utilisés pour leur potentiel effet ergogénique sur la performance physique. Ce travail examine les actions centrales et périphériques sur la fonction contractile du muscle squelettique humain in vivo induits par l'ingestion d'une dose thérapeutique de ß2- agonistes. Le premier but était d'évaluer si les ß2-agonistes exerçaient une potentialisation de la contractilité du muscle humain et/ou un effet "anti¬fatigue" comme observé dans le modèle animal. Les résultats n'ont fournit aucune évidence d'une potentialisation sur le muscle squelettique humain in vivo non-fatigué et fatigué induit par l'administration orale de ß2-agonistes. Tout effet excitateur exercé par ce traitement sur le système nerveux central a été aussi exclu. Le deuxième but était de déterminer si les ß2-agonistes affaiblissaient la contractilité du muscle squelettique humain à contraction lente, et d'évaluer si ce changement pouvait interférer avec le contrôle moteur au muscle. Les résultats ont montré que les ß2-agonistes affaiblissent la contractilité des fibres lentes, comme conséquence de l'effet lusitrope positif se produisant dans ces fibres. La capacité de développer une force maximale n'est pas réduite par le traitement, même si une augmentation de la commande centrale au muscle est requise pour produire la même force lors de contractions sous-maximales. Le but final était d'examiner si une adaptation du contrôle moteur était re¬quis pour compenser l'affaiblissement des fibres lentes exercée par les ß2- agonistes pendant un exercice volontaire, et de déterminer si cette adaptation centrale pouvait accroître la fatigue musculaire. Malgré le fait que les résultats confirment l'effet affaiblissant induit par les ß2-agonistes, ce changement contractile n'influence pas le contrôle moteur au muscle pendant les contractions sous-maximales de l'exercice fatiguant, et n'accroît pas le degré de fatigue. Ce travail éclaircit les actions spécifiques des ß2-agonistes sur la fonction contractile du muscle squelettique humain in vivo et leurs influence sur le contrôle moteur. Les mécanismes sous-jacents de l'action ergogénique sur la performance physique produit par les ß2-agonistes sont aussi élucidés. -- ß2-Agonists are bronchodilators that are widely prescribed for the treatment of asthma and exercise-induced asthma (EIA). The extensive use of ß2-agonists by competitive athletes has raised the question as to whether there is a valid need for this class of drugs because of EIA or a misuse because of their potential ergogenic effect on exercise performance. This work investigated the central and peripheral actions that were elicited by the ingestion of a therapeutic dose of ß2-agonists on the contractility of human skeletal muscle in vivo. The first objective was to investigate whether ß2-agonists would potentiate muscle contractility and/or exert the "anti-fatigue" effect observed in animal models. The findings did not provide any evidence for the ß2-agonist-induced potentiation of in vivo human non-fatigued and fatigued skeletal muscle. Moreover, the findings exclude any excitatory action of this treatment on the central nervous system. The second objective was to explore whether the weakening action on the contractile function would occur after ß2-agonist intake in human slow-twitch skeletal muscle and to ascertain whether this contractile change may interfere with muscle motor control. The results showed that ß2-agonists weaken the contractility of slow-twitch muscle fibres as a result of the lusitropic effect occurring in these fibres. The maximal force-generating capacity of the skeletal muscle is not reduced by ß2-agonists, even though an augmented neural drive to muscle is required to develop the same force during submaximal contractions. The final objective was to examine whether a motor control adjustment is needed to compensate for the ß2-agonist-induced weakening effect on slow- twitch fibres during a voluntary exercise and to also assess whether this central adaptation could exaggerate muscle fatigue. Despite the findings confirming the occurrence of the weakening action that is exerted by ß2- agonists, this contractile change did not interfere with muscle motor control during the submaximal contractions of the fatiguing exercise and did not augment the degree of the muscle fatigue. This work contributes to a better understanding of the specific actions of ß2-agonists on the contractile function of in vivo human skeletal muscles and their influence on motor control. In addition, the findings elucidate mechanisms that could underlie the ergogenic effect that is exerted by ß2- agonists on physical performance.
Resumo:
Taurine (2-aminoethanesulfonic acid) is widely distributed in animal tissues and has diverse pharmacological effects. However, the role of taurine in modulating smooth muscle contractility is still controversial. We propose that taurine (5-80 mM) can exert bidirectional modulation on the contractility of isolated rat jejunal segments. Different low and high contractile states were induced in isolated jejunal segments of rats to observe the effects of taurine and the associated mechanisms. Taurine induced stimulatory effects on the contractility of isolated rat jejunal segments at 3 different low contractile states, and inhibitory effects at 3 different high contractile states. Bidirectional modulation was not observed in the presence of verapamil or tetrodotoxin, suggesting that taurine-induced bidirectional modulation is Ca2+dependent and requires the presence of the enteric nervous system. The stimulatory effects of taurine on the contractility of isolated jejunal segments was blocked by atropine but not by diphenhydramine or by cimetidine, suggesting that muscarinic-linked activation was involved in the stimulatory effects when isolated jejunal segments were in a low contractile state. The inhibitory effects of taurine on the contractility of isolated jejunal segments were blocked by propranolol and L-NG-nitroarginine but not by phentolamine, suggesting that adrenergic β receptors and a nitric oxide relaxing mechanism were involved when isolated jejunal segments were in high contractile states. No bidirectional effects of taurine on myosin phosphorylation were observed. The contractile states of jejunal segments determine taurine-induced stimulatory or inhibitory effects, which are associated with muscarinic receptors and adrenergic β receptors, and a nitric oxide associated relaxing mechanism.
Resumo:
In order to test if the maximal velocity of shortening (V(max)TP) reflects the level of inotropism and is affected by preload and afterload, the behavior of this index was compared in two groups of anesthetized, atropinized dogs when preload and afterload were raised with an angiotensin II infusion. In seven dogs (group I), the arterial pressure elevation was allowed to inhibit reflectively the sympathetic tone and depress contractility. In eleven dogs (group II), the adrenergic activity was abolished by previous administration of reserpine. In group I, there was a significant decrease in V(max)TP during the angiotensin infusion. In group II, there was no significant change in the value of this index when the drug was infused. In six animals of this group, a further increase of arterial pressure was induced, but the values of V(max)TP remained similar to control. These results suggest that this index reflects the inotropic state of the myocardium and does not suffer significantly from the influence of preload and afterload elevations within our experimental limits.
Resumo:
We investigated the effects of γ-radiation on cells isolated from the longitudinal smooth muscle layer of the guinea pig ileum, a relatively radioresistant tissue. Single doses (up to 50 Gy) reduced the amount of sarcoplasmatic reticulum and condensed the myofibrils, as shown by electron microscopy 3 days post-irradiation. After that, contractility of smooth muscle strips was reduced. Ca2+ handling was altered after irradiation, as shown in fura-2 loaded cells, with elevated basal intracellular Ca2+, reduced amount of intrareticular Ca2+, and reduced capacitive Ca2+ entry. Radiation also induced apoptosis, judged from flow cytometry of cells loaded with proprium iodide. Electron microscopy showed that radiation caused condensation of chromatin in dense masses around the nuclear envelope, the presence of apoptotic bodies, fragmentation of the nucleus, detachment of cells from their neighbors, and reductions in cell volume. Radiation also caused activation of caspase 12. Apoptosis was reduced by the administration of the caspase inhibitor Z-Val-Ala-Asp-fluoromethyl-ketone methyl ester (Z-VAD-FMK) during the 3 day period after irradiation, and by the chelator of intracellular Ca2+, 1,2-bis(o-aminophenoxy)-ethane-N,N,N′,N′-tetraacetic acid (BAPTA), from 1 h before until 2 h after irradiation. BAPTA also reduced the effects of radiation on contractility, basal intracellular Ca2+, amount of intrareticular Ca2+, capacitative Ca2+ entry, and apoptosis. In conclusion, the effects of gamma radiation on contractility, Ca2+ handling, and apoptosis appear due to a toxic action of intracellular Ca2+. Ca2+-induced damage to the sarcoplasmatic reticulum seems a key event in impaired Ca2+ handling and apoptosis induced by γ-radiation. © 2008 Elsevier B.V. All rights reserved.
Resumo:
In horses, gastrointestinal (GI) disorders occur frequently and cause a considerable demand for efficient medication. 5-Hydroxytryptamine receptors (5-HT) have been reported to be involved in GI tract motility and thus, are potential targets for treating functional bowel disorders. Our studies extend current knowledge on the 5-HT(7) receptor in equine duodenum, ileum and pelvic flexure by studying its expression throughout the intestine and its role in modulating contractility in vitro by immunofluorescence and organ bath experiments, respectively. 5-HT(7) immunoreactivity was demonstrated in both smooth muscle layers, particularly in the circular one, and within the myenteric plexus. Interstitial cells of Cajal (ICC), identified by c-Kit labeling, show a staining pattern similar to that of 5-HT(7) immunoreactivity. The selective 5-HT(7) receptor antagonist SB-269970 increased the amplitude of contractions in spontaneous contracting specimens of the ileum and in electrical field-stimulated specimens of the pelvic flexure concentration-dependently. Our in vitro experiments suggest an involvement of the 5-HT(7) receptor subtype in contractility of equine intestine. While the 5-HT(7) receptor has been established to be constitutively active and inhibits smooth muscle contractility, our experiments demonstrate an increase in contractility by the 5-HT(7) receptor ligand SB-269970, suggesting it exerting inverse agonist properties.
Resumo:
Aim To evaluate gastrointestinal motility during 5-fluorouracil (5-FU)-induced intestinal mucositis. Materials and methods Wistar rats received 5-FU (150 mg kg(-1), i.p.) or saline. After the 1st, 3rd, 5th, 15th and 30th day, sections of duodenum, jejunum and ileum were removed for assessment of epithelial damage, apoptotic and mitotic indexes, MPO activity and GSH concentration. In order to study gastrointestinal motility, on the 3rd or 15th day after 5-FU treatment, gastric emptying in vivo was measured by scintilographic method, and stomach or duodenal smooth muscle contractions induced by CCh were evaluated in vitro. Results On the third day of treatment, 5-FU induced a significant villi shortening, an increase in crypt depth and intestinal MPO activity and a decrease in villus/crypt ratio and GSH concentration. On the first day after 5-FU there was an increase in the apoptosis index and a decrease in the mitosis index in all intestinal segments. After the 15th day of 5-FU treatment, a complete reversion of all these parameters was observed. There was a delay in gastric emptying in vivo and a significant increase in gastric fundus and duodenum smooth muscle contraction, after both the 3rd and 15th day. Conclusions 5-FU-induced gastrointestinal dysmotility outlasts intestinal mucositis.
Resumo:
The effects of the recently identified human peptide urotensin-II (hU-II) were investigated on human cardiac muscle contractility and coronary artery tone. In right atrial trabeculae from non-failing hearts, hU-II caused a concentration-dependent increase in contractile force (pEC(50)=9.5+/-0.1; E-max= 31.3+/-4.8% compared to 9.25 mM Ca2+; n = 9) with no change in contraction duration. In right ventricular trabeculae from explanted hearts, 20 nM hU-II caused a small increase in contractile force (7.8+/-1.4% compared to 9.25 mM Ca2+; n= 3/6 tissues from 2 out of 4 patients). The peptide caused arrhythmic contractions in 3/26 right atrial trabeculae from 3/9 patients in an experimental model of arrhythmia and therefore has less potential to cause arrhythmias than ET-1. hU-II (20 nM) increased tone (17.9% of the response to 90 mM KCI) in 7/7 tissues from 1 patient, with no response detected in 8/8 tissues from 2 patients. hU-II is a potent cardiac stimulant with low efficacy.
Resumo:
Training and competition in major track-and-field events, and for many team or racquet sports, often require the completion of maximal sprints in hot (>30 °C) ambient conditions. Enhanced short-term (<30 s) power output or single-sprint performance, resulting from transient heat exposure (muscle temperature rise), can be attributed to improved muscle contractility. Under heat stress, elevations in skin/core temperatures are associated with increased cardiovascular and metabolic loads in addition to decreasing voluntary muscle activation; there is also compelling evidence to suggest that large performance decrements occur when repeated-sprint exercise (consisting of brief recovery periods between sprints, usually <60 s) is performed in hot compared with cool conditions. Conversely, poorer intermittent-sprint performance (recovery periods long enough to allow near complete recovery, usually 60-300 s) in hotter conditions is solely observed when exercise induces marked hyperthermia (core temperature >39 °C). Here we also discuss strategies (heat acclimatization, precooling, hydration strategies) employed by "sprint" athletes to mitigate the negative influence of higher environmental temperatures.
Resumo:
Octopamine (OA) and tyramine (TA) play important roles in homeostatic mechanisms, behavior, and modulation of neuromuscular junctions in arthropods. However, direct actions of these amines on muscle force production that are distinct from effects at the neuromuscular synapse have not been well studied. We utilize the technical benefits of the Drosophila larval preparation to distinguish the effects of OA and TA on the neuromuscular synapse from their effects on contractility of muscle cells. In contrast to the slight and often insignificant effects of TA, the action of OA was profound across all metrics assessed. We demonstrate that exogenous OA application decreases the input resistance of larval muscle fibers, increases the amplitude of excitatory junction potentials (EJPs), augments contraction force and duration, and at higher concentrations (10−5 and 10−4 M) affects muscle cells 12 and 13 more than muscle cells 6 and 7. Similarly, OA increases the force of synaptically driven contractions in a cell-specific manner. Moreover, such augmentation of contractile force persisted during direct muscle depolarization concurrent with synaptic block. OA elicited an even more profound effect on basal tonus. Application of 10−5 M OA increased synaptically driven contractions by ∼1.1 mN but gave rise to a 28-mN increase in basal tonus in the absence of synaptic activation. Augmentation of basal tonus exceeded any physiological stimulation paradigm and can potentially be explained by changes in intramuscular protein mechanics. Thus we provide evidence for independent but complementary effects of OA on chemical synapses and muscle contractility.
Resumo:
Octopamine (OA) and tyramine (TA) play important roles in homeostatic mechanisms, behavior, and modulation of neuromuscular junctions in arthropods. However, direct actions of these amines on muscle force production that are distinct from effects at the neuromuscular synapse have not been well studied. We utilize the technical benefits of the Drosophila larval preparation to distinguish the effects of OA and TA on the neuromuscular synapse from their effects on contractility of muscle cells. In contrast to the slight and often insignificant effects of TA, the action of OA was profound across all metrics assessed. We demonstrate that exogenous OA application decreases the input resistance of larval muscle fibers, increases the amplitude of excitatory junction potentials (EJPs), augments contraction force and duration, and at higher concentrations (10(-5) and 10(-4) M) affects muscle cells 12 and 13 more than muscle cells 6 and 7. Similarly, OA increases the force of synaptically driven contractions in a cell-specific manner. Moreover, such augmentation of contractile force persisted during direct muscle depolarization concurrent with synaptic block. OA elicited an even more profound effect on basal tonus. Application of 10(-5) M OA increased synaptically driven contractions by ≈ 1.1 mN but gave rise to a 28-mN increase in basal tonus in the absence of synaptic activation. Augmentation of basal tonus exceeded any physiological stimulation paradigm and can potentially be explained by changes in intramuscular protein mechanics. Thus we provide evidence for independent but complementary effects of OA on chemical synapses and muscle contractility.
Resumo:
Background and purpose: Overactive bladder is a complex and widely prevalent condition, but little is known about its physiopathology. We have carried out morphological, biochemical and functional assays to investigate the effects of long-term nitric oxide (NO) deficiency on muscarinic receptor and beta-adrenoceptor modulation leading to overactivity of rat detrusor muscle. Experimental approach: Male Wistar rats received No-nitro-L-arginine methyl ester (L-NAME) in drinking water for 7-30 days. Functional responses to muscarinic and b-adrenoceptor agonists were measured in detrusor smooth muscle (DSM) strips in Krebs-Henseleit solution. Measurements of [H-3] inositol phosphate, NO synthase (NOS) activity, [H-3] quinuclidinyl benzilate ([H-3]QNB) binding and bladder morphology were also performed. Key results: Long-term L-NAME treatment significantly increased carbachol-induced DSM contractile responses after 15 and 30 days; relaxing responses to the beta(3)-adrenoceptor agonist BRL 37-344 were significantly reduced at 30 days. Constitutive NOS activity in bladder was reduced by 86% after 7 days and maintained up to 30 days of L-NAME treatment. Carbachol increased sixfold the [H-3] inositol phosphate in bladder tissue from rats treated with L-NAME. [H-3] QNB was bound with an apparent KD twofold higher in bladder membranes after L-NAME treatment compared with that in control. No morphological alterations in DSM were found. Conclusions and implications: Long-term NO deficiency increased rat DSM contractile responses to a muscarinic agonist, accompanied by significantly enhanced KD values for muscarinic receptors and [H-3] inositol phosphate accumulation in bladder. This supersensitivity for muscarinic agonists along with reductions of beta(3)-adrenoceptor-mediated relaxations indicated that overactive DSM resulted from chronic NO deficiency.