931 resultados para muscle activation patterns


Relevância:

100.00% 100.00%

Publicador:

Resumo:

The collective purpose of these two studies was to determine a link between the V02 slow component and the muscle activation patterns that occur during cycling. Six, male subjects performed an incremental cycle ergometer exercise test to determine asub-TvENT (i.e. 80% of TvENT) and supra-TvENT (TvENT + 0.75*(V02 max - TvENT) work load. These two constant work loads were subsequently performed on either three or four occasions for 8 mins each, with V02 captured on a breath-by-breath basis for every test, and EMO of eight major leg muscles collected on one occasion. EMG was collected for the first 10 s of every 30 s period, except for the very first 10 s period. The V02 data was interpolated, time aligned, averaged and smoothed for both intensities. Three models were then fitted to the V02 data to determine the kinetics responses. One of these models was mono-exponential, while the other two were biexponential. A second time delay parameter was the only difference between the two bi-exponential models. An F-test was used to determine significance between the biexponential models using the residual sum of squares term for each model. EMO was integrated to obtain one value for each 10 s period, per muscle. The EMG data was analysed by a two-way repeated measures ANOV A. A correlation was also used to determine significance between V02 and IEMG. The V02 data during the sub-TvENT intensity was best described by a mono-exponential response. In contrast, during supra-TvENT exercise the two bi-exponential models best described the V02 data. The resultant F-test revealed no significant difference between the two models and therefore demonstrated that the slow component was not delayed relative to the onset of the primary component. Furthermore, only two parameters were deemed to be significantly different based upon the two models. This is in contrast to other findings. The EMG data, for most muscles, appeared to follow the same pattern as V02 during both intensities of exercise. On most occasions, the correlation coefficient demonstrated significance. Although some muscles demonstrated the same relative increase in IEMO based upon increases in intensity and duration, it cannot be assumed that these muscles increase their contribution to V02 in a similar fashion. Larger muscles with a higher percentage of type II muscle fibres would have a larger increase in V02 over the same increase in intensity.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

This study aimed to determine: 1) the spatial patterns of hamstring activation during the Nordic hamstring exercise (NHE); 2) whether previously injured hamstrings display activation deficits during the NHE, and; 3) whether previously injured hamstrings exhibit altered cross-sectional area. Ten healthy, recreationally active males with a history of unilateral hamstring strain injury underwent functional magnetic resonance imaging (fMRI) of their thighs before and after 6 sets of 10 repetitions of the NHE. Transverse (T2) relaxation times of all hamstring muscles (biceps femoris long head, (BFlh); biceps femoris short head (BFsh); semitendinosus (ST); semimembranosus (SM)), were measured at rest and immediately after the NHE and cross-sectional area (CSA) was measured at rest. For the uninjured limb, the ST’s percentage increase in T2 with exercise was 16.8, 15.8 and 20.2% greater than the increases exhibited by the BFlh, BFsh and SM, respectively (p<0.002 for all). Previously injured hamstring muscles (n=10) displayed significantly smaller increases in T2 post-exercise than the homonymous muscles in the uninjured contralateral limb (mean difference -7.2%, p=0.001). No muscles displayed significant between limb differences in CSA. During the NHE, the ST is preferentially activated and previously injured hamstring muscles display chronic activation deficits compared to uninjured contralateral muscles.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Introduction: Shoulder impingement is one of the most common presentations of shoulder joint problems 1. It appears to be caused by a reduction in the sub-acromial space as the humerus abducts between 60o -120o – the 'painful arc'. Structures between the humeral head and the acromion are thus pinched causing pain and further pathology 2. Shoulder muscle activity can influence this joint space but it is unclear whether this is a cause or effect in impingement patients. This study aimed to observe muscle activation patterns in normal and impingement shoulder patients and determine if there were any significant differences. Method: 19 adult subjects were asked to perform shoulder abduction in their symptomatic arm and non-symptomatic. 10 of these subjects (age 47.9 ± 11.2) were screened for shoulder impingement, and 9 subjects (age 38.9 ± 14.3) had no history of shoulder pathology. Surface EMG was used to collect data for 6 shoulder muscles (Upper, middle and lower trapezius, serratus anterior, infraspinatus, middle deltoids) which was then filtered and fully rectified. Subjects performed 3 smooth unilateral abduction movements at a cadence of 16 beats of a metronome set at 60bpm, and the mean of their results was recorded. T-tests were used to indicate any statistical significance in the data sets. Significance was set at P<0.05. Results: There was a significant difference in muscle activation with serratus anterior in particular showing a very low level of activation throughout the range when compared to normal shoulder activation patterns (<30%). Middle deltoid recruitment was significantly reduced between 60-90o in the impingement group (30:58%).Trends were noted in other muscles with upper trapezius and infraspinatus activating more rapidly and erratically (63:25%; 60:27% respectively), and lower trapezius with less recruitment (13:30%) in the patient group, although these did not quite reach significance. Conclusion: There appears to be some interesting alterations in muscle recruitment patterns in impingement shoulder patients when compared against their own unaffected shoulders and the control group. In particular changes in scapula control (serratus anterior and trapezius) and lateral rotation (infraspinatus), which have direct influence on the sub-acromial space, should be noted. It is still not clear whether these alterations are causative or reactionary, but this finding gives a clear indication to the importance of addressing muscle reeducation as part of a rehabilitation programme in shoulder impingement patients.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Study Design. Cross-sectional study. Objective. This study compared neck muscle activation patterns during and after a repetitive upper limb task between patients with idiopathic neck pain, whiplash-associated disorders, and controls. Summary of Background Data. Previous studies have identified altered motor control of the upper trapezius during functional tasks in patients with neck pain. Whether the cervical flexor muscles demonstrate altered motor control during functional activities is unknown. Methods. Electromyographic activity was recorded from the sternocleidomastoid, anterior scalenes, and upper trapezius muscles. Root mean square electromyographic amplitude was calculated during and on completion of a functional task. Results. A general trend was evident to suggest greatest electromyograph amplitude in the sternocleidomastoid, anterior scalenes, and left upper trapezius muscles for the whiplash-associated disorders group, followed by the idiopathic group, with lowest electromyographic amplitude recorded for the control group. A reverse effect was apparent for the right upper trapezius muscle. The level of perceived disability ( Neck Disability Index score) had a significant effect on the electromyographic amplitude recorded between neck pain patients. Conclusions. Patients with neck pain demonstrated greater activation of accessory neck muscles during a repetitive upper limb task compared to asymptomatic controls. Greater activation of the cervical muscles in patients with neck pain may represent an altered pattern of motor control to compensate for reduced activation of painful muscles. Greater perceived disability among patients with neck pain accounted for the greater electromyographic amplitude of the superficial cervical muscles during performance of the functional task.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

It has often been supposed that patterns of rhythmic bimanual coordination in which homologous muscles are engaged simultaneously, are performed in a more stable manner than those in which the same muscles are activated in an alternating fashion. In order to assess the efficacy of this constraint, the present study investigated the effect of forearm posture (prone or supine) on bimanual abduction-adduction movements of the wrist in isodirectional and non-isodirectional modes of coordination. Irrespective of forearm posture, non-isodirectional coordination was observed to be more stable than isodirectional coordination. In the latter condition, there was a more severe deterioration of coordination accuracy/stability as a function of cycling frequency than in the former condition. With elevations in cycling frequency, the performers recruited extra mechanical degrees of freedom, principally via flexion-extension of the wrist, which gave rise to increasing motion in the vertical plane. The increases in movement amplitude in the vertical plane were accompanied by decreasing amplitude in the horizontal plane. In agreement with previous studies, the present findings confirm that the relative timing of homologous muscle activation acts as a principal constraint upon the stability of interlimb coordination. Furthermore, it is argued that the use of manipulations of limb posture to investigate the role of other classes of constraint (e.g. perceptual) should be approached with caution because such manipulations affect the mapping between muscle activation patterns, movement dynamics and kinematics.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Objective: Overuse injuries in violinists are a problem that has been primarily analyzed through the use of questionnaires. Simultaneous 3D motion analysis and EMG to measure muscle activity has been suggested as a quantitative technique to explore this problem by identifying movement patterns and muscular demands which may predispose violinists to overuse injuries. This multi-disciplinary analysis technique has, so far, had limited use in the music world. The purpose of this study was to use it to characterize the demands of a violin bowing task. Subjects: Twelve injury-free violinists volunteered for the study. The subjects were assigned to a novice or expert group based on playing experience, as determined by questionnaire. Design and Settings: Muscle activity and movement patterns were assessed while violinists played five bowing cycles (one bowing cycle = one down-bow + one up-bow) on each string (G, D, A, E), at a pulse of 4 beats per bow and 100 beats per minute. Measurements: An upper extremity model created using coordinate data from markers placed on the right acromion process, lateral epicondyle of the humerus and ulnar styloid was used to determine minimum and maximum joint angles, ranges of motion (ROM) and angular velocities at the shoulder and elbow of the bowing arm. Muscle activity in right anterior deltoid, biceps brachii and triceps brachii was assessed during maximal voluntary contractions (MVC) and during the playing task. Data were analysed for significant differences across the strings and between experience groups. Results: Elbow flexion/extension ROM was similar across strings for both groups. Shoulder flexion/extension ROM increaslarger for the experts. Angular velocity changes mirrored changes in ROM. Deltoid was the most active of the muscles assessed (20% MVC) and displayed a pattern of constant activation to maintain shoulder abduction. Biceps and triceps were less active (4 - 12% MVC) and showed a more periodic 'on and off pattern. Novices' muscle activity was higher in all cases. Experts' muscle activity showed a consistent pattern across strings, whereas the novices were more irregular. The agonist-antagonist roles of biceps and triceps during the bowing motion were clearly defined in the expert group, but not as apparent in the novice group. Conclusions: Bowing movement appears to be controlled by the shoulder rather than the elbow as shoulder ROM changed across strings while elbow ROM remained the same. Shoulder injuries are probably due to repetition as the muscle activity required for the movement is small. Experts require a smaller amount of muscle activity to perform the movement, possibly due to more efficient muscle activation patterns as a result of practice. This quantitative multidisciplinary approach to analysing violinists' movements can contribute to fuller understanding of both playing demands and injury mechanisms .

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Objective: To determine the nervous activation, muscle strength, and biomechanical parameters that influence the cost of walking in older fallers and non-fallers. Methods: Maximal voluntary isokinetic torque was measured for the hip, knee and ankle of older women. Oxygen consumption was measured at rest and during 8 min of walking at self-selected speed. An additional minute of walking was performed to collect kinematic variables and the electromyographic signal of trunk, hip, knee, and ankle muscles, which was analyzed by the linear envelope. Cost of walking was calculated by subtracting resting body mass-normalized oxygen consumption from walking body mass-normalized oxygen consumption. Stride time and length, and ankle and hip range of motion were calculated from kinematic data. Findings: Older adult fallers had 28% lower knee extensor strength (p = 0.02), 47% lower internal oblique activation at heel contact (p = 0.03), and higher coactivation between tibialis anterior and gastrocnemius lateralis in each of the gait phases (p < 0.05). For fallers, a higher activation of gluteus maximus was associated with a higher cost of walking (r = 0.55, p < 0.05 and r = 0.71, p < 0.01, before and after heel contact, respectively). For non-fallers, an association between cost of walking and age (r = 0.60, p = 0.01) and cost of walking and thigh muscle coactivation (r = 0.53, p = 0.01) existed. Interpretation: This study demonstrated that there may be links between lower-extremity muscle weakness, muscle activation patterns, altered gait, and increased cost of walking in older fallers. © 2013 Elsevier Ltd. All rights reserved.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

It has often been supposed that patterns of rhythmic bimanual coordination in which homologous muscles are engaged simultaneously, are performed in a more stable manner than those in which the same muscles are activated in an alternating fashion. In order to assess the efficacy of this constraint, the present study investigated the effect of forearm posture (prone or supine) on bimanual abduction-adduction movements of the wrist in isodirectional and non-isodirectional modes of coordination. Irrespective of forearm posture, non-isodirectional coordination was observed to be more stable than isodirectional coordination. In the latter condition, there was a more severe deterioration of coordination accuracy/stability as a function of cycling frequency than in the former condition. With elevations in cycling frequency, the performers recruited extra mechanical degrees of freedom, principally via flexion-extension of the wrist, which gave rise to increasing motion in the vertical plane. The increases in movement amplitude in the vertical plane were accompanied by decreasing amplitude in the horizontal plane. In agreement with previous studies, the present findings confirm that the relative timing of homologous muscle activation acts as a principal constraint upon the stability of interlimb coordination. Furthermore, it is argued that the use of manipulations of limb posture to investigate the role of other classes of constraint (e.g. perceptual) should be approached with caution because such manipulations affect the mapping between muscle activation patterns, movement dynamics and kinematics.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Objective: To determine the extent to which different strength training exercises selectively activate the commonly injured biceps femoris long head (BFLH) muscle. Methods: This two-part observational study recruited 24 recreationally active males. Part 1 explored the amplitudes and the ratios of lateral to medial hamstring (BF/MH) normalised electromyography (nEMG) during the concentric and eccentric phases of 10 common strength training exercises. Part 2 used functional magnetic resonance imaging (fMRI) to determine the spatial patterns of hamstring activation during two exercises which i) most selectively, and ii) least selectively activated the BF in part 1. Results: Eccentrically, the largest BF/MH nEMG ratio was observed in the 45° hip extension exercise and the lowest was observed in the Nordic hamstring (NHE) and bent-knee bridge exercises. Concentrically, the highest BF/MH nEMG ratio was observed during the lunge and 45° hip extension and the lowest was observed for the leg curl and bent-knee bridge. fMRI revealed a greater BFLH to semitendinosus activation ratio in the 45° hip extension than the NHE (p<0.001). The T2 increase after hip extension for BFLH, semitendinosus and semimembranosus muscles were greater than that for BFSH (p<0.001). During the NHE, the T2 increase was greater for the semitendinosus than for the other hamstrings (p≤0.002). Conclusion: This investigation highlights the non-uniformity of hamstring activation patterns in different tasks and suggests that hip extension exercise more selectively activates the BFLH while the NHE preferentially recruits the semitendinosus. These findings have implications for strength training interventions aimed at preventing hamstring injury.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The control of movement is predicated upon a system of constraints of musculoskeletal and neural origin. The focus of the present study was upon the manner in which such constraints are adapted or superseded during the acquisition of motor skill. Individuals participated in five experimental sessions, ill which they attempted to produce abduction-adduction movements of the index finger in time with an auditory metronome. During each trial, the metronome frequency was increased in eight steps from an individually determined base frequency. Electromyographic (EMC) activity was recorded from first dorsal interosseous (FDI), first volar interosseous (FVI), flexor digitorum superficialis (FDS), and extensor digitorum communis (EDC) muscles. The movements produced on the final day of acquisition more accurately matched the required profile, and exhibited greater spatial and temporal stability, than those generated during initial performance. Tn the early stages of skill acquisition, an alternating pattern of activation in FDI and FVI was maintained, even at the highest frequencies. Tn contrast, as the frequency of movement was increased, activity in FDS and EDC was either tonic or intermittent. As learning proceeded, alterations in recruitment patterns were expressed primarily in the extrinsic muscles (EDC and FDS). These changes took the form of increases in the postural role of these muscles, shifts to phasic patterns of activation, or selective disengagement of these muscles. These findings suggest that there is considerable flexibility in the composition of muscle synergies, which is exploited by individuals during the acquisition of coordination.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Low back pain is an increasing problem in industrialised countries and although it is a major socio-economic problem in terms of medical costs and lost productivity, relatively little is known about the processes underlying the development of the condition. This is in part due to the complex interactions between bone, muscle, nerves and other soft tissues of the spine, and the fact that direct observation and/or measurement of the human spine is not possible using non-invasive techniques. Biomechanical models have been used extensively to estimate the forces and moments experienced by the spine. These models provide a means of estimating the internal parameters which can not be measured directly. However, application of most of the models currently available is restricted to tasks resembling those for which the model was designed due to the simplified representation of the anatomy. The aim of this research was to develop a biomechanical model to investigate the changes in forces and moments which are induced by muscle injury. In order to accurately simulate muscle injuries a detailed quasi-static three dimensional model representing the anatomy of the lumbar spine was developed. This model includes the nine major force generating muscles of the region (erector spinae, comprising the longissimus thoracis and iliocostalis lumborum; multifidus; quadratus lumborum; latissimus dorsi; transverse abdominis; internal oblique and external oblique), as well as the thoracolumbar fascia through which the transverse abdominis and parts of the internal oblique and latissimus dorsi muscles attach to the spine. The muscles included in the model have been represented using 170 muscle fascicles each having their own force generating characteristics and lines of action. Particular attention has been paid to ensuring the muscle lines of action are anatomically realistic, particularly for muscles which have broad attachments (e.g. internal and external obliques), muscles which attach to the spine via the thoracolumbar fascia (e.g. transverse abdominis), and muscles whose paths are altered by bony constraints such as the rib cage (e.g. iliocostalis lumborum pars thoracis and parts of the longissimus thoracis pars thoracis). In this endeavour, a separate sub-model which accounts for the shape of the torso by modelling it as a series of ellipses has been developed to model the lines of action of the oblique muscles. Likewise, a separate sub-model of the thoracolumbar fascia has also been developed which accounts for the middle and posterior layers of the fascia, and ensures that the line of action of the posterior layer is related to the size and shape of the erector spinae muscle. Published muscle activation data are used to enable the model to predict the maximum forces and moments that may be generated by the muscles. These predictions are validated against published experimental studies reporting maximum isometric moments for a variety of exertions. The model performs well for fiexion, extension and lateral bend exertions, but underpredicts the axial twist moments that may be developed. This discrepancy is most likely the result of differences between the experimental methodology and the modelled task. The application of the model is illustrated using examples of muscle injuries created by surgical procedures. The three examples used represent a posterior surgical approach to the spine, an anterior approach to the spine and uni-lateral total hip replacement surgery. Although the three examples simulate different muscle injuries, all demonstrate the production of significant asymmetrical moments and/or reduced joint compression following surgical intervention. This result has implications for patient rehabilitation and the potential for further injury to the spine. The development and application of the model has highlighted a number of areas where current knowledge is deficient. These include muscle activation levels for tasks in postures other than upright standing, changes in spinal kinematics following surgical procedures such as spinal fusion or fixation, and a general lack of understanding of how the body adjusts to muscle injuries with respect to muscle activation patterns and levels, rate of recovery from temporary injuries and compensatory actions by other muscles. Thus the comprehensive and innovative anatomical model which has been developed not only provides a tool to predict the forces and moments experienced by the intervertebral joints of the spine, but also highlights areas where further clinical research is required.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Battery powered bed movers are becoming increasingly common within the hospital setting. The use of powered bed movers is believed to result in reduced physical efforts required by health care workers, which may be associated with a decreased risk of occupation related injuries. However, little work has been conducted assessing how powered bed movers impact on levels of physiological strain and muscle activation for the user. The muscular efforts associated with moving hospital beds using three different methods; manual pushing, StaminaLift Bed Mover (SBM) and Gzunda Bed Mover (GBM)were measured on six male subjects. Fourteen muscles were assessed moving a weighted hospital bed along a standardized route in an Australian hospital environment. Trunk inclination and upper spine acceleration were also quantified. Powered bed movers exhibited significantly lower muscle activation levels than manual pushing for the majority of muscles. When using the SBM, users adopted a more upright posture which was maintained while performing different tasks (e.g. turning a corner, entering a lift), while trunk inclination varied considerably for manual pushing and the GBM. The reduction in lower back muscular activation levels and the load reducing effect of a more upright posture may result in lower incidence of lower back injury.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Humans are able to stabilize their movements in environments with unstable dynamics by selectively modifying arm impedance independently of force and torque. We further investigated adaptation to unstable dynamics to determine whether the CNS maintains a constant overall level of stability as the instability of the environmental dynamics is varied. Subjects performed reaching movements in unstable force fields of varying strength, generated by a robotic manipulator. Although the force fields disrupted the initial movements, subjects were able to adapt to the novel dynamics and learned to produce straight trajectories. After adaptation, the endpoint stiffness of the arm was measured at the midpoint of the movement. The stiffness had been selectively modified in the direction of the instability. The stiffness in the stable direction was relatively unchanged from that measured during movements in a null force field prior to exposure to the unstable force field. This impedance modification was achieved without changes in force and torque. The overall stiffness of the arm and environment in the direction of instability was adapted to the force field strength such that it remained equivalent to that of the null force field. This suggests that the CNS attempts both to maintain a minimum level of stability and minimize energy expenditure.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The origin of the tri-phasic burst pattern, observed in the EMGs of opponent muscles during rapid self-terminated movements, has been controversial. Here we show by computer simulation that the pattern emerges from interactions between a central neural trajectory controller (VITE circuit) and a peripheral neuromuscularforce controller (FLETE circuit). Both neural models have been derived from simple functional constraints that have led to principled explanations of a wide variety of behavioral and neurobiological data, including, as shown here, the generation of tri-phasic bursts.