942 resultados para municipal solid wastes


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Fermentable components of municipal solid wastes (MSW) such as fruit and vegetable wastes (FVW), leaf litter, paddy straw, cane bagasse, cane trash and paper are generated in large quantities at various pockets of the city. These form potential feedstocks for decentralized biogas plants to be operated in the vicinity. We characterized the fermentation potential of six of the above MSW fractions for their suitability to be converted to biogas and anaerobic compost using the solid-state stratified bed (SSB) process in a laboratory study. FVW and leaf litter (papermulberry leaves) decomposed almost completely while paddy straw, sugarcane trash, sugarcane bagasse and photocopying paper decomposed to a lower extent. In the SSB process between 50-60% of the biological methane potential (BMP) could be realized. Observations revealed that the SSB process needs to be adapted differently for each of the feedstocks to obtain a higher gas recovery. Bagasse produced the largest fraction of anaerobic compost (fermentation residue) and has the potential for reuse in many ways.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The hydrogen production from the organic fraction of municipal solid waste (OFMSW) by anaerobic mixed culture fermentation was investigated using batch experiments at 37 degrees C. Seven varieties of typical individual components of OFMSW including rice, potato, lettuce, lean meat, oil, fat and banyan leaves were selected to estimate the hydrogen production potential. Experimental results showed that the boiling treated anaerobic sludge was effective mixed inoculum for fermentative hydrogen production from OFMSW. Mechanism of fermentative hydrogen production indicates that, among the OFMSW, carbohydrates is the most optimal substrate for fermentative hydrogen production compared with proteins, lipids and lignocelluloses. This conclusion was also substantiated by experimental results of this study. The hydrogen production potentials of rice, potato and lettuce were 134 mL/g-VS, 106 mL/g-VS, and 50 mL/g-VS respectively. The hydrogen percentages of the total gas produced from rice, potato and lettuce were 57-70%, 41-55% and 37-67%. 2008 International Association for Hydrogen Energy.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Differential scanning calorimetry (DSC) in association with chemical analysis was applied to assess the maturity reached by the organic fraction of Municipal Solid Wastes (MSW) subjected to composting processes with manual and fixed aeration and sampled at different composting times. Thermograms showed that the difference in the treatments, i.e., the manual aeration and the fixed aeration, had no relevant effect on the stabilization and maturation of OM in the substrates. Common thermal effects observed were: a low temperature endotherm assigned to dehydration and/or loss of peripheral polysaccharides chains; a medium temperature exotherm assigned to loss of peptidic structures, and a high temperature exotherm assigned to oxydation and polycondensation of aromatic nuclei of the molecule. Results obtained suggest that in the experimental conditions used, a shorter time of composting (about 30 d) appears adequate, in order to limit the extended mineralization of OM, whereas a prolonged composting time (up to 132 d) would produce a compost of poor quality with high ash content and low OM content.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

This work addresses the synthesis of carbon nanomaterials (CNMs) by up-cycling common solid wastes. These feedstocks could supersede the use of costly and often toxic or highly flammable chemicals, such as hydrocarbon gases, carbon monoxide, and hydrogen, which are commonly used as feedstocks in current nanomanufacturing processes for CNMs. Agricultural sugar cane bagasse and corn residues, scrap tire chips, and postconsumer polyethylene (PE) and polyethylene terephthalate (PET) bottle shreddings were either thermally treated by sole pyrolysis or by sequential pyrolysis and partial oxidation. The resulting gaseous carbon-bearing effluents were then channeled into a heated reactor. CNMs, including carbon nanotubes, were catalytically synthesized therein on stainless steel meshes. This work revealed that the structure of the resulting CNMs is determined by the feedstock type, through the disparate mixtures of carbon-bearing gases generated when different feedstocks are pyrolyzed. CNM characterization was conducted by scanning and transmission electron microscopy as well as by Raman spectroscopy and by thermogravimetric analysis. Gas chromatography was used to characterize the gases in the synthesis chamber. This work demonstrated an alternative method for efficient manufacturing of CNMs using both biodegradable and nonbiodegradable agricultural and municipal carbonaceous wastes.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

A thermogravimetric methodology was developed to investigate and semi-quantify the extent of synergistic effects during pyrolysis and combustion of municipal solid waste (MSW). Results from TGA-MS were used to compare the pyrolysis and combustion characteristics of single municipal solid waste components (polyvinyl chloride (PVC), polypropylene (PP), polystyrene (PS), branches (BR), leaves (LV), grass (GR), packaging paper (PK), hygienic paper (HP) and cardboard (CB)) and a mixture (MX) of PP, BR and CB. Samples were heated under dynamic conditions at 20°C/min from 25°C to 1000°C with the continuous record of their main evolved fragments. Synergistic effects were evaluated by comparing experimental and calculated weight losses and relative areas of MS peaks. Pyrolysis of the mixture happened in two stages, with the release of H2, CH4, H2O, CO and CO2 between 200 and 415°C and the release of CH4, CxHy, CO and CO2 between 415 and 525°C. Negative synergistic effect in the 1st stage was attributed to the presence of PP where the release of hydrocarbons and CO2 from BR and CB was inhibited, whereas positive synergistic effects were observed during the 2nd degradation stage. In a second part of the study, synergistic effects were related to the dependency of the effective activation energy (Eα) versus the conversion (α). Higher Eαs were obtained for MX during its 1st stage of pyrolysis and lower Eαs for the 2nd stage when compared to the individual components. On the other hand, mostly positive synergistic effects were observed during the combustion of the same mixture, for which lower Eαs were recorded.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Great differences between municipal solid wastes(MSW)produced at different places and different times in terms of such parameters as physical ingredient and heating value lead to difficulty in effective handling of MSW. In this paper, ingredient, heating value and their temporal varying trends of typical MSW in Beijing were continuously measured and analyzed. With consideration of the process in pyrolysis and incineration, correlation between physical ingredients and heating values was induced, favorable for evaluation of heating value needed in handling of MSW from simple analysis of physical ingredients of it.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Solid waste generation is a natural consequence of human activity and is increasing along with population growth, urbanization and industrialization. Improper disposal of the huge amount of solid waste seriously affects the environment and contributes to climate change by the release of greenhouse gases. Practicing anaerobic digestion (AD) for the organic fraction of municipal solid waste (OFMSW) can reduce emissions to environment and thereby alleviate the environmental problems together with production of biogas, an energy source, and digestate, a soil amendment. The amenability of substrate for biogasification varies from substrate to substrate and different environmental and operating conditions such as pH, temperature, type and quality of substrate, mixing, retention time etc. Therefore, the purpose of this research work is to develop feasible semi-dry anaerobic digestion process for the treatment of OFMSW from Kerala, India for potential energy recovery and sustainable waste management. This study was carried out in three phases in order to reach the research purpose. In the first phase, batch study of anaerobic digestion of OFMSW was carried out for 100 days at 32°C (mesophilic digestion) for varying substrate concentrations. The aim of this study was to obtain the optimal conditions for biogas production using response surface methodology (RSM). The parameters studied were initial pH, substrate concentration and total organic carbon (TOC). The experimental results showed that the linear model terms of initial pH and substrate concentration and the quadratic model terms of the substrate concentration and TOC had significant individual effect (p < 0.05) on biogas yield. However, there was no interactive effect between these variables (p > 0.05). The optimum conditions for maximizing the biogas yield were a substrate concentration of 99 g/l, an initial pH of 6.5 and TOC of 20.32 g/l. AD of OFMSW with optimized substrate concentration of 99 g/l [Total Solid (TS)-10.5%] is a semi-dry digestion system .Under the optimized condition, the maximum biogas yield was 53.4 L/kg VS (volatile solid).. In the second phase, semi-dry anaerobic digestion of organic solid wastes was conducted for 45 days in a lab-scale batch experiment for substrate concentration of 100 g/l (TS-11.2%) for investigating the start-up performances under thermophilic condition (50°C). The performance of the reactor was evaluated by measuring the daily biogas production and calculating the degradation of total solids and the total volatile solids. The biogas yield at the end of the digestion was 52.9 L/kg VS for the substrate concentration of 100 g/l. About 66.7% of volatile solid degradation was obtained during the digestion. A first order model based on the availability of substrate as the limiting factor was used to perform the kinetic studies of batch anaerobic digestion system. The value of reaction rate constant, k, obtained was 0.0249 day-1. A laboratory bench scale reactor with a capacity of 36.8 litres was designed and fabricated to carry out the continuous anaerobic digestion of OFMSW in the third phase. The purpose of this study was to evaluate the performance of the digester at total solid concentration of 12% (semi-dry) under mesophlic condition (32°C). The digester was operated with different organic loading rates (OLRs) and constant retention time. The performance of the reactor was evaluated using parameters such as pH, volatile fatty acid (VFA), alkalinity, chemical oxygen demand (COD), TOC and ammonia-N as well as biogas yield. During the reactor’s start-up period, the process is stable and there is no inhibition occurred and the average biogas production was 14.7 L/day. The reactor was fed in continuous mode with different OLRs (3.1,4.2 and 5.65 kg VS/m3/d) at constant retention time of 30 days. The highest volatile solid degradation of 65.9%, with specific biogas production of 368 L/kg VS fed was achieved with OLR of 3.1 kg VS/m3/d. Modelling and simulation of anaerobic digestion of OFMSW in continuous operation is done using adapted Anaerobic Digestion Model No 1 (ADM1).The proposed model, which has 34 dynamic state variables, considers both biochemical and physicochemical processes and contains several inhibition factors including three gas components. The number of processes considered is 28. The model is implemented in Matlab® version 7.11.0.584(R2010b). The model based on adapted ADM1 was tested to simulate the behaviour of a bioreactor for the mesophilic anaerobic digestion of OFMSW at OLR of 3.1 kg VS/m3/d. ADM1 showed acceptable simulating results.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

In the first paper of this paper (Part I), conditions were presented for the gas cleaning technological route for environomic optimisation of a cogeneration system based in a thermal cycle with municipal solid waste incineration. In this second part, an environomic analysis is presented of a cogeneration system comprising a combined cycle composed of a gas cycle burning natural gas with a heat recovery steam generator with no supplementary burning and a steam cycle burning municipal solid wastes (MSW) to which will be added a pure back pressure steam turbine (another one) of pure condensation. This analysis aims to select, concerning some scenarios, the best atmospheric pollutant emission control routes (rc) according to the investment cost minimisation, operation and social damage criteria. In this study, a comparison is also performed with the results obtained in the Case Study presented in Part I. (c) 2007 Elsevier Ltd. All rights reserved.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Research of advanced technologies for energy generation contemplates a series of alternatives that are introduced both in the investigation of new energy sources and in the improvement and/or development of new components and systems. Even though significant reductions are observed in the amount of emissions, the proposed alternatives require the use of exhaust gases cleaning systems. The results of environmental analyses based on two configurations proposed for urban waste incineration are presented in this paper; the annexation of integer (Boolean) variables to the environomic model makes it possible to define the best gas cleaning routes based on exergetic cost minimisation criteria. In this first part, the results for steam cogeneration system analysis associated with the incineration of municipal solid wastes (MSW) is presented. (c) 2007 Elsevier Ltd. All rights reserved.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Nowadays, natural gas is viewed as the solution to the problem of energy supply for Latin America, Europe and North America for the next few decades; Brazil is increasingly becoming dependent upon the Bolivian natural-gas supply - many industries and some entrepreneurs are deciding to construct industrial cogeneration systems and new thermal power-stations burning natural gas because of its low environmental impact and attractive price. However, natural gas is a finite resource: this will cause, in the future, an increase of its unit price. This paper details questions involved in the energy generation and presents solid-waste burning as a possible alternative fuel for the future, especially in the context of cogeneration practice in which the thermal and electric energy are used primarily for the industries located in an industrial district. Two cogeneration schemes are proposed for the burning of municipal solid wastes, associated or not with natural gas, and their technical and economic feasibilities are examined. (C) 1999 Elsevier B.V. Ltd. All rights reserved.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Persistent organic pollutants (POPs), organochlorine pesticides and polychlorinated biphenyls (PCBs), listed as per the Stockholm Convention (α -HCH, β -HCH, γ -HCH, p,p′-DDT, o,p′-DDT, p,p′-DDD, p,p′-DDE, aldrin, endrin, dieldrin, PCBs 28, 52, 118, 138, 153, and 180), were analyzed in municipal solid waste (MSW) compost samples from three different Brazilian composting plants located in three São Paulo State cities: Araras, Araraquara and São Paulo (Vila Leopoldinha). Quantitative and qualitative analyses were carried out using gas chromatography electron capture detection (GC-ECD) and gas chromatography mass spectrometry (GC-MS) (Ion Trap, electron impact ionization), respectively. The samples were analyzed in triplicate and the target POPs were not detected by GC-ECD. Twelve pollutants were identified in two samples when qualitative analysis (GC-MS) was used (β -HCH, γ -HCH, p,p′-DDT, o,p′-DDT, p,p′-DDD, and p,p′-DDE, PCBs 28, 118, 138, 153 and 180). The composting process has advantages such as urban solid waste reduction and landfill life-span increase, however the MSW compost quality, which can be utilized for agricultural purposes, should be evaluated and be controlled. This kind of study is the first step in making available information to answer questions regarding MSW compost for sustainable agricultural use, such as the pollutants accumulation in soil and in groundwater, and plants uptake. Copyright © Taylor & Francis Group, LLC.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

New European directives have proposed the direct application of compost and digestate produced from municipal solid wastes as organic matter sources in agricultural soils. Therefore information about phosphorus leaching from these residues when they are applied to the soil is increasingly mportant. Leaching experiments were conducted to determine the P mobility in compost and digestate mixtures, supplying equivalent amounts to 100 kg P ha?1 to three different types of soils. The tests were performed in accordance with CEN/TS 14405:2004 analyzing the maximum dissolved reactive P and the kinetic rate in the leachate. P biowaste fractionation indicated that digestate has a higher level of available P than compost has. In contrast, P losses in leaching experiments with soil-compost mixtureswere higher than in soil-digestate mixtures. For bothwastes, therewas no correlation between disolved reactive P lost and the water soluble P.The interaction between soil and waste, the long experimentation time, and the volume of leachate obtained caused the waste?s wettability to become an influential parameter in P leaching behavior. The overall conclusion is that kinetic data analysis provides valuable information concerning the sorption mechanism that can be used for predicting the large-scale behavior of soil systems.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The thermal decomposition of a solid recovered fuel has been studied using thermogravimetry, in order to get information about the main steps in the decomposition of such material. The study comprises two different atmospheres: inert and oxidative. The kinetics of decomposition is determined at three different heating rates using the same kinetic constants and model for both atmospheres at all the heating rates simultaneously. A good correlation of the TG data is obtained using three nth-order parallel reactions.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The fermentation characteristics of six specific types of the organic fraction of municipal solid waste (OFMSW) were examined, with an emphasis on properties that are needed when designing plug-flow type anaerobic bioreactors. More specifically, the decomposition patterns of a vegetable (cabbage), fruits (banana and citrus peels), fresh leaf litter of bamboo and teak leaves, and paper (newsprint) waste streams as feedstocks were studied. Individual OFMSW components were placed into nylon mesh bags and subjected to various fermentation periods (solids retention time, SRT) within the inlet of a functioning plug-flow biogas fermentor. These were removed at periodic intervals, and their composition was analyzed to monitor decomposition rates and changes in chemical composition. Components like cabbage waste, banana peels, and orange peels fermented rapidly both in a plug-flow biogas reactor (PFBR) as well as under a biological methane potential (BMP) assay, while other OFMSW components (leaf litter from bamboo and teak leaves and newsprint) fermented slowly with poor process stability and moderate biodegradation. For fruit and vegetable wastes (FVW), a rapid and efficient removal of pectins is the main cause of rapid disintegration of these feedstocks, which left behind very little compost forming residues (2–5%). Teak and bamboo leaves and newsprint decomposed only to 25–50% in 30 d. These results confirm the potential for volatile fatty acids accumulation in a PFBR’s inlet and suggest a modification of the inlet zone or operation of a PFBR with the above feedstocks.