910 resultados para multivariate GARCH
Resumo:
Internal risk management models of the kind popularized by J. P. Morgan are now used widely by the world’s most sophisticated financial institutions as a means of measuring risk. Using the returns on three of the most popular futures contracts on the London International Financial Futures Exchange, in this paper we investigate the possibility of using multivariate generalized autoregressive conditional heteroscedasticity (GARCH) models for the calculation of minimum capital risk requirements (MCRRs). We propose a method for the estimation of the value at risk of a portfolio based on a multivariate GARCH model. We find that the consideration of the correlation between the contracts can lead to more accurate, and therefore more appropriate, MCRRs compared with the values obtained from a univariate approach to the problem.
Resumo:
The paper considers various extended asymmetric multivariate conditional volatility models, and derives appropriate regularity conditions and associated asymptotic theory. This enables checking of internal consistency and allows valid statistical inferences to be drawn based on empirical estimation. For this purpose, we use an underlying vector random coefficient autoregressive process, for which we show the equivalent representation for the asymmetric multivariate conditional volatility model, to derive asymptotic theory for the quasi-maximum likelihood estimator. As an extension, we develop a new multivariate asymmetric long memory volatility model, and discuss the associated asymptotic properties.
Resumo:
In this paper, we propose a multivariate GARCH model with a time-varying conditional correlation structure. The new double smooth transition conditional correlation (DSTCC) GARCH model extends the smooth transition conditional correlation (STCC) GARCH model of Silvennoinen and Teräsvirta (2005) by including another variable according to which the correlations change smoothly between states of constant correlations. A Lagrange multiplier test is derived to test the constancy of correlations against the DSTCC-GARCH model, and another one to test for another transition in the STCC-GARCH framework. In addition, other specification tests, with the aim of aiding the model building procedure, are considered. Analytical expressions for the test statistics and the required derivatives are provided. Applying the model to the stock and bond futures data, we discover that the correlation pattern between them has dramatically changed around the turn of the century. The model is also applied to a selection of world stock indices, and we find evidence for an increasing degree of integration in the capital markets.
Resumo:
In this paper, we propose several finite-sample specification tests for multivariate linear regressions (MLR) with applications to asset pricing models. We focus on departures from the assumption of i.i.d. errors assumption, at univariate and multivariate levels, with Gaussian and non-Gaussian (including Student t) errors. The univariate tests studied extend existing exact procedures by allowing for unspecified parameters in the error distributions (e.g., the degrees of freedom in the case of the Student t distribution). The multivariate tests are based on properly standardized multivariate residuals to ensure invariance to MLR coefficients and error covariances. We consider tests for serial correlation, tests for multivariate GARCH and sign-type tests against general dependencies and asymmetries. The procedures proposed provide exact versions of those applied in Shanken (1990) which consist in combining univariate specification tests. Specifically, we combine tests across equations using the MC test procedure to avoid Bonferroni-type bounds. Since non-Gaussian based tests are not pivotal, we apply the “maximized MC” (MMC) test method [Dufour (2002)], where the MC p-value for the tested hypothesis (which depends on nuisance parameters) is maximized (with respect to these nuisance parameters) to control the test’s significance level. The tests proposed are applied to an asset pricing model with observable risk-free rates, using monthly returns on New York Stock Exchange (NYSE) portfolios over five-year subperiods from 1926-1995. Our empirical results reveal the following. Whereas univariate exact tests indicate significant serial correlation, asymmetries and GARCH in some equations, such effects are much less prevalent once error cross-equation covariances are accounted for. In addition, significant departures from the i.i.d. hypothesis are less evident once we allow for non-Gaussian errors.
Resumo:
This paper applies two measures to assess spillovers across markets: the Diebold Yilmaz (2012) Spillover Index and the Hafner and Herwartz (2006) analysis of multivariate GARCH models using volatility impulse response analysis. We use two sets of data, daily realized volatility estimates taken from the Oxford Man RV library, running from the beginning of 2000 to October 2016, for the S&P500 and the FTSE, plus ten years of daily returns series for the New York Stock Exchange Index and the FTSE 100 index, from 3 January 2005 to 31 January 2015. Both data sets capture both the Global Financial Crisis (GFC) and the subsequent European Sovereign Debt Crisis (ESDC). The spillover index captures the transmission of volatility to and from markets, plus net spillovers. The key difference between the measures is that the spillover index captures an average of spillovers over a period, whilst volatility impulse responses (VIRF) have to be calibrated to conditional volatility estimated at a particular point in time. The VIRF provide information about the impact of independent shocks on volatility. In the latter analysis, we explore the impact of three different shocks, the onset of the GFC, which we date as 9 August 2007 (GFC1). It took a year for the financial crisis to come to a head, but it did so on 15 September 2008, (GFC2). The third shock is 9 May 2010. Our modelling includes leverage and asymmetric effects undertaken in the context of a multivariate GARCH model, which are then analysed using both BEKK and diagonal BEKK (DBEKK) models. A key result is that the impact of negative shocks is larger, in terms of the effects on variances and covariances, but shorter in duration, in this case a difference between three and six months.
Resumo:
In this paper we propose a new multivariate GARCH model with time-varying conditional correlation structure. The time-varying conditional correlations change smoothly between two extreme states of constant correlations according to a predetermined or exogenous transition variable. An LM–test is derived to test the constancy of correlations and LM- and Wald tests to test the hypothesis of partially constant correlations. Analytical expressions for the test statistics and the required derivatives are provided to make computations feasible. An empirical example based on daily return series of five frequently traded stocks in the S&P 500 stock index completes the paper.
Resumo:
The importance of modelling correlation has long been recognised in the field of portfolio management, with largedimensional multivariate problems increasingly becoming the focus of research. This paper provides a straightforward and commonsense approach toward investigating a number of models used to generate forecasts of the correlation matrix for large-dimensional problems.We find evidence in favour of assuming equicorrelation across various portfolio sizes, particularly during times of crisis. During periods of market calm, however, the suitability of the constant conditional correlation model cannot be discounted, especially for large portfolios. A portfolio allocation problem is used to compare forecasting methods. The global minimum variance portfolio and Model Confidence Set are used to compare methods, while portfolio weight stability and relative economic value are also considered.
Resumo:
This paper considers the transmission of volatility in global foreign exchange, equity and bond markets. Using a multivariate GARCH framework which includes measures of realised volatility as explanatory variables, significant volatility and news spillovers are found to occur on the same trading day between Japan, Europe, and the United States. All markets exhibit significant degrees of asymmetry in terms of the transmission of volatility associated with good and bad news. There are also strong links between diffusive volatilities in all three markets, whereas jumpactivity is only importantwithin the equitymarkets. The results of this paper deepen our understanding of how news and volatility are propagated through global financial markets.
Resumo:
This paper models the mean and volatility spillovers of prices within the integrated Iberian and the interconnected Spanish and French electricity markets. Using the constant (CCC) and dynamic conditional correlation (DCC) bivariate models with three different specifications of the univariate variance processes, we study the extent to which increasing interconnection and harmonization in regulation have favoured price convergence. The data consist of daily prices calculated as the arithmetic mean of the hourly prices over a span from July 1st 2007 until February 29th 2012. The DCC model in which the variances of the univariate processes are specified with a VARMA(1,1) fits the data best for the integrated MIBEL whereas a CCC model with a GARCH(1,1) specification for the univariate variance processes is selected to model the price series in Spain and France. Results show that there are significant mean and volatility spillovers in the MIBEL, indicating strong interdependence between the two markets, while there is a weaker evidence of integration between the Spanish and French markets. We provide new evidence that the EU target of achieving a single electricity market largely depends on increasing trade between countries and homogeneous rules of market functioning.
Resumo:
We introduce a stochastic process with Wishart marginals: the generalised Wishart process (GWP). It is a collection of positive semi-definite random matrices indexed by any arbitrary dependent variable. We use it to model dynamic (e.g. time varying) covariance matrices. Unlike existing models, it can capture a diverse class of covariance structures, it can easily handle missing data, the dependent variable can readily include covariates other than time, and it scales well with dimension; there is no need for free parameters, and optional parameters are easy to interpret. We describe how to construct the GWP, introduce general procedures for inference and predictions, and show that it outperforms its main competitor, multivariate GARCH, even on financial data that especially suits GARCH. We also show how to predict the mean of a multivariate process while accounting for dynamic correlations.
Resumo:
In this paper we propose exact likelihood-based mean-variance efficiency tests of the market portfolio in the context of Capital Asset Pricing Model (CAPM), allowing for a wide class of error distributions which include normality as a special case. These tests are developed in the frame-work of multivariate linear regressions (MLR). It is well known however that despite their simple statistical structure, standard asymptotically justified MLR-based tests are unreliable. In financial econometrics, exact tests have been proposed for a few specific hypotheses [Jobson and Korkie (Journal of Financial Economics, 1982), MacKinlay (Journal of Financial Economics, 1987), Gib-bons, Ross and Shanken (Econometrica, 1989), Zhou (Journal of Finance 1993)], most of which depend on normality. For the gaussian model, our tests correspond to Gibbons, Ross and Shanken’s mean-variance efficiency tests. In non-gaussian contexts, we reconsider mean-variance efficiency tests allowing for multivariate Student-t and gaussian mixture errors. Our framework allows to cast more evidence on whether the normality assumption is too restrictive when testing the CAPM. We also propose exact multivariate diagnostic checks (including tests for multivariate GARCH and mul-tivariate generalization of the well known variance ratio tests) and goodness of fit tests as well as a set estimate for the intervening nuisance parameters. Our results [over five-year subperiods] show the following: (i) multivariate normality is rejected in most subperiods, (ii) residual checks reveal no significant departures from the multivariate i.i.d. assumption, and (iii) mean-variance efficiency tests of the market portfolio is not rejected as frequently once it is allowed for the possibility of non-normal errors.
Resumo:
Este trabajo se concentra en el estudio de los mecanismos de transmisión de información entre las volatilidades del diferencial de tasas de interés de Colombia y Estados Unidos tanto en el corto como en el largo plazo y la tasa de cambio usando tres diferentes tipos de modelos GARCH multivariados, encontrando que hay evidencia de spillovers de volatilidad de los diferenciales de tasas de interés hacia la tasa de cambio, que esta transmisión de información persiste en el tiempo y que los choques exógenos a estos mercados no tienen carácter asimétrico.
Resumo:
En este trabajo se realiza la medición del riesgo de mercado para el portafolio de TES de un banco colombiano determinado, abordando el pronóstico de valor en riesgo (VaR) mediante diferentes modelos multivariados de volatilidad: EWMA, GARCH ortogonal, GARCH robusto, así como distintos modelos de VaR con distribución normal y distribución t-student, evaluando su eficiencia con las metodologías de backtesting propuestas por Candelon et al. (2011) con base en el método generalizado de momentos, junto con los test de independencia y de cobertura condicional planteados por Christoffersen y Pelletier (2004) y por Berkowitz, Christoffersen y Pelletier (2010). Los resultados obtenidos demuestran que la mejor especificación del VaR para la medición del riesgo de mercado del portafolio de TES de los bancos colombianos, es el construido a partir de volatilidades EWMA y basado en la distribución normal, ya que satisface las hipótesis de cobertura no condicional, independencia y cobertura condicional, al igual que los requerimientos estipulados en Basilea II y en la normativa vigente en Colombia.