114 resultados para multislice
Resumo:
OBJECTIVE: This study evaluated the influence of metallic dental artifacts on the accuracy of simulated mandibular lesion detection by using multislice technology. MATERIAL AND METHODS: Fifteen macerated mandibles were used. Perforations were done simulating bone lesions and the mandibles were subjected to axial 16 rows multislice CT images using 0.5 mm of slice thickness with 0.3 mm interval of reconstruction. Metallic dental restorations were done and the mandibles were subjected again to CT in the same protocol. The images were analyzed to detect simulated lesions in the mandibles, verifying the loci number and if there was any cortical perforation exposing medullar bone. The analysis was performed by two independent examiners using e-film software. RESULTS: The samples without artifacts presented better results compared to the gold standard (dried mandible with perforations). In the samples without artifacts, all cortical perforation were identified and 46 loci were detected (of 51) in loci number analysis. Among the samples with artifacts, 12 lesions out of 14 were recognized regarding medullar invasion, and 40 out of 51 concerning loci number. The sensitivity in samples without artifacts was 90% and 100% regarding loci number and medullar invasion, respectively. In samples with artifacts, these values dropped to 78% and 86%, respectively. The presence of metallic restorations affected the sensitivity values of the method, but the difference was not significant (p>0.05). CONCLUSIONS: Although there were differences in the results of samples with and without artifacts, the presence of metallic restoration did not lead to misinterpretation of the final diagnosis. However, the validity of multislice CT imaging in this study was established for detection of simulated mandibular bone lesions.
Resumo:
Conventional radiography has shown limitation in acquiring image of the ATM region, thus, computed tomography (CT) scanning has been the best option to the present date for diagnosis, surgical planning and treatment of bone lesions, owing to its specific properties. OBJECTIVE: The aim of the study was to evaluate images of simulated bone lesions at the head of the mandible by multislice CT. MATERIAL AND METHODS: Spherical lesions were made with dental spherical drills (sizes 1, 3, and 6) and were evaluated by using multislice CT (64 rows), by two observers in two different occasions, deploying two protocols: axial, coronal, and sagittal images, and parasagittal images for pole visualization (anterior, lateral, posterior, medial and superior). Acquired images were then compared with those lesions in the dry mandible (gold standard) to evaluate the specificity and sensibility of both protocols. Statistical methods included: Kappa statistics, validity test and chi-square test. Results demonstrated the advantage of associating axial, coronal, and sagittal slices with parasagittal slices for lesion detection at the head of the mandible. RESULTS: There was no statistically significant difference between the types of protocols regarding a particular localization of lesions at the poles. CONCLUSIONS: Protocols for the assessment of the head of the mandible were established to improve the visualization of alterations of each of the poles of the mandible's head. The anterior and posterior poles were better visualized in lateral-medial planes while lateral, medial and superior poles were better visualized in the anterior-posterior plane.
Resumo:
There are many studies that compare the accuracy of multislice (MSCT) and cone beam (CBCT) computed tomography for evaluations in the maxillofacial region. However, further studies comparing both acquisition techniques for the evaluation of simulated mandibular bone lesions are needed. The aim of this study was to compare the accuracy of MSCT and CBCT in the diagnosis of simulated mandibular bone lesions by means of cross sectional images and axial/MPR slices. Lesions with different dimensions, shape and locularity were produced in 15 dry mandibles. The images were obtained following the cross sectional and axial/MPR (Multiplanar Reconstruction) imaging protocols and were interpreted independently. CBCT and MSCT showed similar results in depicting the percentage of cortical bone involvement, with great sensitivity and specificity (p < 0.005). There were no significant intra- or inter-examiner differences between axial/MPR images and cross sectional images with regard to sensitivity and specificity. CBCT showed results similar to those of MSCT for the identification of the number of simulated bone lesions. Cross sectional slices and axial/MPR images presented high accuracy, proving useful for bone lesion diagnosis.
Resumo:
The objective was to evaluate the influence of dental metallic artefacts on implant sites using multislice and cone-beam computed tomography techniques. Ten dried human mandibles were scanned twice by each technique, with and without dental metallic artefacts. Metallic restorations were placed at the top of the alveolar ridge adjacent to the mental foramen region for the second scanning. Linear measurements (thickness and height) for each cross-section were performed by a single examiner using computer software. All mandibles were analysed at both the right and the left mental foramen regions. For the multislice technique, dental metallic artefact produced an increase of 5% in bone thickness and a reduction of 6% in bone height; no significant differences (p > 0.05) were detected when comparing measurements performed with and without metallic artefacts. With respect to the cone-beam technique, dental metallic artefact produced an increase of 6% in bone thickness and a reduction of 0.68% in bone height. No significant differences (p > 0.05) were observed when comparing measurements performed with and without metallic artefacts. The presence of dental metallic artefacts did not alter the linear measurements obtained with both techniques, although its presence made the location of the alveolar bone crest more difficult.
Resumo:
The aim of this study was to determine the applicability of multislice and cone-beam computerized tomography (CT) in the assessment of bone defects in patients with oral clefts. Bone defects were produced in 9 dry skulls to mimic oral clefts. All defects were modeled with wax. The skulls were submitted to multislice and cone-beam CT. Subsequently, physical measurements were obtained by the Archimedes principle of water displacement of wax models. The results demonstrated that multislice and cone-beam CT showed a high efficiency rate and were considered to be effective for volumetric assessment of bone defects. It was also observed that both CT modalities showed excellent results with high reliability in the study of the volume of bone defects, with no difference in performance between them. The clinical applicability of our research has shown these CT modalities to be immediate and direct, and they is important for the diagnosis and therapeutic process of patients with oral cleft. (Oral Surg Oral Med Oral Pathol Oral Radiol Endod 2011; 112: 249-257)
Resumo:
Fundamento: A origem anômala das artérias coronarianas é uma entidade relativamente rara, podendo se apresentar de várias formas clínicas e evoluir de forma adversa. A angiotomografia multislice das artérias coronarianas vem ganhando espaço na prática clínica diária, representando importante método propedêutico, com grande potencial na avaliação anatômica dessas artérias. Objetivo: O objetivo deste estudo é descrever os achados angiotomográficos e a evolução de pacientes com origem anômala das artérias coronarianas. Métodos: Durante o período de janeiro de 2008 a março de 2011, foram avaliados consecutivamente 404 pacientes encaminhados para realização de angiotomografia das coronárias por diversos motivos, com tempo médio de seguimento de 21 meses. Resultados: Nove pacientes (2,2%) apresentaram origem anômala das artérias coronárias, sendo quatro com origem anômala da artéria circunflexa (Cx) em Coronária Direita (CD), dois com origem anômala da CD (um com origem de CD em Cx, e um com origem de CD em seio coronariano esquerdo), um paciente com tronco coronariano único (descendente anterior e Cx saindo do seio coronariano esquerdo), um com trajeto anômalo do tronco da coronária esquerda entre aorta e artéria pulmonar e um paciente apresentando tronco coronariano esquerdo originando-se do seio coronariano direito. Dos pacientes avaliados, um paciente recebeu um cardiodesfibrilador implantável; um paciente evoluiu com morte súbita durante internação hospitalar; e os outros não tiveram intercorrências. Conclusão: A angiotomografia multislice das coronárias representa método propedêutico minimamente invasivo que possibilita detectar a origem, o curso e terminação das anomalias de origem das artérias coronarianas com excelente acurácia, possibilitando o correto diagnóstico e auxiliando no planejamento terapêutico.
Resumo:
OBJECT: In this study the accuracy of multislice computerized tomography (MSCT) angiography in the postoperative examination of clip-occluded intracranial aneurysms was compared with that of intraarterial digital subtraction (DS) angiography METHODS: Forty-nine consecutive patients with 60 clipped aneurysms (41 of which had ruptured) were studied with the aid of postoperative MSCT and DS angiography. Both types of radiological studies were reviewed independently by two observers to assess the quality of the images, the artifacts left by the clips, the completeness of aneurysm occlusion, the patency of the parent vessel, and the duration and cost of the examination. The quality of MSCT angiography was good in 42 patients (86%). Poor-quality MSCT angiograms (14%) were a result of the late acquisition of images in three patients and the presence of clip or motion artifacts in four. Occlusion of the aneurysm on good-quality MSCT angiograms was confirmed in all but two patients in whom a small (2-mm) remnant was confirmed on DS angiograms. In one patient, occlusion of a parent vessel was seen on DS angiograms but missed on MSCT angiograms. The sensitivity and specificity for detecting neck remnants on MSCT angiography were both 100%, and the sensitivity and specificity for evaluating vessel patency were 80 and 100%, respectively (95% confidence interval 29.2-100%). Interobserver agreements were 0.765 and 0.86, respectively. The mean duration of the examination was 13 minutes for MSCT angiography and 75 minutes for DS angiography (p < 0.05). Multislice CT angiography was highly cost effective (p < 0.01). CONCLUSIONS: Current-generation MSCT angiography is an accurate noninvasive tool used for assessment of clipped aneurysms in the anterior circulation. Its high sensitivity and low cost warrant its use for postoperative routine control examinations following clip placement on an aneurysm. Digital subtraction angiography must be performed if the interpretation of MSCT angiograms is doubtful or if the aneurysm is located in the posterior circulation.
Resumo:
Cerebral blood flow can be studied in a multislice mode with a recently proposed perfusion sequence using inversion of water spins as an endogenous tracer without magnetization transfer artifacts. The magnetization transfer insensitive labeling technique (TILT) has been used for mapping blood flow changes at a microvascular level under motor activation in a multislice mode. In TILT, perfusion mapping is achieved by subtraction of a perfusion-sensitized image from a control image. Perfusion weighting is accomplished by proximal blood labeling using two 90 degrees radiofrequency excitation pulses. For control preparation the labeling pulses are modified such that they have no net effect on blood water magnetization. The percentage of blood flow change, as well as its spatial extent, has been studied in single and multislice modes with varying delays between labeling and imaging. The average perfusion signal change due to activation was 36.9 +/- 9.1% in the single-slice experiments and 38.1 +/- 7.9% in the multislice experiments. The volume of activated brain areas amounted to 1.51 +/- 0.95 cm3 in the contralateral primary motor (M1) area, 0.90 +/- 0.72 cc in the ipsilateral M1 area, 1.27 +/- 0.39 cm3 in the contralateral and 1.42 +/- 0.75 cm3 in the ipsilateral premotor areas, and 0.71 +/- 0.19 cm3 in the supplementary motor area.
Resumo:
Objective: To evaluate the agreement between multislice CT (MSCT) and intravascular ultrasound (IVUS) to assess the in-stent lumen diameters and lumen areas of left main coronary artery (LMCA) stents. Design: Prospective, observational single centre study. Setting: A single tertiary referral centre. Patients: Consecutive patients with LMCA stenting excluding patients with atrial fibrillation and chronic renal failure. Interventions: MSCT and IVUS imaging at 912 months follow-up were performed for all patients. Main outcome measures: Agreement between MSCT and IVUS minimum luminal area (MLA) and minimum luminal diameter (MLD). A receiver operating characteristic (ROC) curve was plotted to find the MSCT cut-off point to diagnose binary restenosis equivalent to 6 mm2 by IVUS. Results: 52 patients were analysed. PassingBablok regression analysis obtained a β coefficient of 0.786 (0.586 to 1.071) for MLA and 1.250 (0.936 to 1.667) for MLD, ruling out proportional bias. The α coefficient was −3.588 (−8.686 to −0.178) for MLA and −1.713 (−3.583 to −0.257) for MLD, indicating an underestimation trend of MSCT. The ROC curve identified an MLA ≤4.7 mm2 as the best threshold to assess in-stent restenosis by MSCT. Conclusions: Agreement between MSCT and IVUS to assess in-stent MLA and MLD for LMCA stenting is good. An MLA of 4.7 mm2 by MSCT is the best threshold to assess binary restenosis. MSCT imaging can be considered in selected patients to assess LMCA in-stent restenosis
Resumo:
Objective: To evaluate the agreement between multislice CT (MSCT) and intravascular ultrasound (IVUS) to assess the in-stent lumen diameters and lumen areas of left main coronary artery (LMCA) stents. Design: Prospective, observational single centre study. Setting: A single tertiary referral centre. Patients: Consecutive patients with LMCA stenting excluding patients with atrial fibrillation and chronic renal failure. Interventions: MSCT and IVUS imaging at 9-12 months follow-up were performed for all patients. Main outcome measures: Agreement between MSCT and IVUS minimum luminal area (MLA) and minimum luminal diameter (MLD). A receiver operating characteristic (ROC) curve was plotted to find the MSCT cut-off point to diagnose binary restenosis equivalent to 6 mm2 by IVUS. Results: 52 patients were analysed. Passing-Bablok regression analysis obtained a β coefficient of 0.786 (0.586 to 1.071) for MLA and 1.250 (0.936 to 1.667) for MLD, ruling out proportional bias. The α coefficient was −3.588 (−8.686 to −0.178) for MLA and −1.713 (−3.583 to −0.257) for MLD, indicating an underestimation trend of MSCT. The ROC curve identified an MLA ≤4.7 mm2 as the best threshold to assess in-stent restenosis by MSCT. Conclusions: Agreement between MSCT and IVUS to assess in-stent MLA and MLD for LMCA stenting is good. An MLA of 4.7 mm2 by MSCT is the best threshold to assess binary restenosis. MSCT imaging can be considered in selected patients to assess LMCA in-stent restenosis
Resumo:
A tomografia computadorizada multislice é, atualmente, a modalidade de imagem de escolha para a avaliação dos seios paranasais e das estruturas adjacentes. Ela tem sido cada vez mais utilizada para a avaliação das variações anatômicas, identificando-as de forma precisa e com elevados detalhes anatômicos. Algumas variações anatômicas podem predispor a sinusopatias e constituir regiões de alto risco para lesões e complicações durante atos operatórios. Portanto, o reconhecimento dessas variações é de fundamental importância no pré-operatório de cirurgia endoscópica.
Resumo:
O câncer de mama representa o tipo de câncer mais comum em mulheres e constitui a primeira causa de morte por câncer nesta população. As alterações extramamárias relacionadas ao câncer de mama desempenham papel relevante no prognóstico e tratamento desta entidade, sendo fundamental a realização do diagnóstico correto e das diversas alterações. A maioria dessas manifestações é proveniente do tratamento adotado ou de suas complicações e pode estar associada a comprometimento linfonodal, recorrência locorregional ou metástases a distância.
Resumo:
OBJECTIVE: to evaluate the impact of the new technology of multidetector computed tomography (MDCT) in improving the accuracy and early diagnosis of BSBI.METHODS: patients with blunt small bowel injuries (BSBI) grade> I were identified retrospectively and their CT scans reviewed by an experienced radiologist. Clinical and tomographic findings were analyzed and patients grouped as "pre-MDCT" and "post-MDCT", according to the time of implementation of a 64-slice MDCT.RESULTS: of the 26 patients with BSBI 16 had CT scans. Motor vehicle collision (62.5%) was the most frequent mechanism of injury. In the pre-MDCT period, five of the 13 patients (38.5%) had abdominal CT, and in the post-MDCT, 11 of 13 patients (84.6%) had the exam. During pre-MDCT, all CT scans were abnormal with findings of pneumoperitoneum (60%), free fluid (40%) and bowel wall enhancement (20%). In the post-MDCT group, all exams but one were abnormal and the most frequent findings were free fluid (90.9%), bowel wall enhancement (72.7%), and pneumoperitoneum (54.5%). However, the rate of delayed laparotomy did not change. The mortality rate in both groups were similar, with 20% during pre-MDCT and 18.2% during post-MDCT.CONCLUSION: the use of MDCT in abdominal trauma in our service has increased the sensibility of the diagnosis, but has had no impact on outcome so far.
Resumo:
Objective. This study was designed to determine the precision and accuracy of angular measurements using three-dimensional computed tomography (3D-CT) volume rendering by computer systems. Study design. The study population consisted of 28 dried skulls that were scanned with a 64-row multislice CT, and 3D-CT images were generated. Angular measurements, (n = 6) based upon conventional craniometric anatomical landmarks (n = 9), were identified independently in 3D-CT images by 2 radiologists, twice each, and were then performed by 3D-CT imaging. Subsequently, physical measurements were made by a third examiner using a Beyond Crysta-C9168 series 900 device. Results. The results demonstrated no statistically significant difference between interexaminer and intraexaminer analysis. The mean difference between the physical and 3-D-based angular measurements was -1.18% and -0.89%, respectively, for both examiners, demonstrating high accuracy. Conclusion. Maxillofacial analysis of angular measurements using 3D-CT volume rendering by 64-row multislice CT is established and can be used for orthodontic and dentofacial orthopedic applications.