830 resultados para multiresolution filtering
Resumo:
This thesis is about detection of local image features. The research topic belongs to the wider area of object detection, which is a machine vision and pattern recognition problem where an object must be detected (located) in an image. State-of-the-art object detection methods often divide the problem into separate interest point detection and local image description steps, but in this thesis a different technique is used, leading to higher quality image features which enable more precise localization. Instead of using interest point detection the landmark positions are marked manually. Therefore, the quality of the image features is not limited by the interest point detection phase and the learning of image features is simplified. The approach combines both interest point detection and local description into one phase for detection. Computational efficiency of the descriptor is therefore important, leaving out many of the commonly used descriptors as unsuitably heavy. Multiresolution Gabor features has been the main descriptor in this thesis and improving their efficiency is a significant part. Actual image features are formed from descriptors by using a classifierwhich can then recognize similar looking patches in new images. The main classifier is based on Gaussian mixture models. Classifiers are used in one-class classifier configuration where there are only positive training samples without explicit background class. The local image feature detection method has been tested with two freely available face detection databases and a proprietary license plate database. The localization performance was very good in these experiments. Other applications applying the same under-lying techniques are also presented, including object categorization and fault detection.
Resumo:
This work is part of a research under construction since 2000, in which the main objective is to measure small dynamic displacements by using L1 GPS receivers. A very sensible way to detect millimetric periodic displacements is based on the Phase Residual Method (PRM). This method is based on the frequency domain analysis of the phase residuals resulted from the L1 double difference static data processing of two satellites in almost orthogonal elevation angle. In this article, it is proposed to obtain the phase residuals directly from the raw phase observable collected in a short baseline during a limited time span, in lieu of obtaining the residual data file from regular GPS processing programs which not always allow the choice of the aimed satellites. In order to improve the ability to detect millimetric oscillations, two filtering techniques are introduced. One is auto-correlation which reduces the phase noise with random time behavior. The other is the running mean to separate low frequency from the high frequency phase sources. Two trials have been carried out to verify the proposed method and filtering techniques. One simulates a 2.5 millimeter vertical antenna displacement and the second uses the GPS data collected during a bridge load test. The results have shown a good consistency to detect millimetric oscillations.
Resumo:
Nitrogen-doped carbon nanotubes can provide reactive sites on the porphyrin-like defects. It is well known that many porphyrins have transition-metal atoms, and we have explored transition-metal atoms bonded to those porphyrin-like defects inN-doped carbon nanotubes. The electronic structure and transport are analyzed by means of a combination of density functional theory and recursive Green's function methods. The results determined the heme B-like defect (an iron atom bonded to four nitrogens) is the most stable and has a higher polarization current for a single defect. With randomly positioned heme B defects in nanotubes a few hundred nanometers long, the polarization reaches near 100%, meaning they are effective spin filters. A disorder-induced magnetoresistance effect is also observed in those long nanotubes, and values as high as 20 000% are calculated with nonmagnectic eletrodes.
Resumo:
This paper deals with the H(infinity) recursive estimation problem for general rectangular time-variant descriptor systems in discrete time. Riccati-equation based recursions for filtered and predicted estimates are developed based on a data fitting approach and game theory. In this approach, the nature determines a state sequence seeking to maximize the estimation cost, whereas the estimator tries to find an estimate that brings the estimation cost to a minimum. A solution exists for a specified gamma-level if the resulting cost is positive. In order to present some computational alternatives to the H(infinity) filters developed, they are rewritten in information form along with the respective array algorithms. (C) 2009 Elsevier Ltd. All rights reserved.
Resumo:
The goal of this paper is to study and propose a new technique for noise reduction used during the reconstruction of speech signals, particularly for biomedical applications. The proposed method is based on Kalman filtering in the time domain combined with spectral subtraction. Comparison with discrete Kalman filter in the frequency domain shows better performance of the proposed technique. The performance is evaluated by using the segmental signal-to-noise ratio and the Itakura-Saito`s distance. Results have shown that Kalman`s filter in time combined with spectral subtraction is more robust and efficient, improving the Itakura-Saito`s distance by up to four times. (C) 2007 Elsevier Ltd. All rights reserved.
Resumo:
This technical note develops information filter and array algorithms for a linear minimum mean square error estimator of discrete-time Markovian jump linear systems. A numerical example for a two-mode Markovian jump linear system, to show the advantage of using array algorithms to filter this class of systems, is provided.
Resumo:
One-way master-slave (OWMS) chain networks are widely used in clock distribution systems due to their reliability and low cost. As the network nodes are phase-locked loops (PLLs), double-frequency jitter (DFJ) caused by their phase detectors appears as an impairment to the performance of the clock recovering process found in communication systems and instrumentation applications. A nonlinear model for OWMS chain networks with P + 1 order PLLs as slave nodes is presented, considering the DFJ. Since higher order filters are more effective in filtering DFJ, the synchronous state stability conditions for an OWMS chain network with third-order nodes are derived, relating the loop gain and the filter coefficients. By using these conditions, design examples are discussed.
Resumo:
We consider in this paper the optimal stationary dynamic linear filtering problem for continuous-time linear systems subject to Markovian jumps in the parameters (LSMJP) and additive noise (Wiener process). It is assumed that only an output of the system is available and therefore the values of the jump parameter are not accessible. It is a well known fact that in this setting the optimal nonlinear filter is infinite dimensional, which makes the linear filtering a natural numerically, treatable choice. The goal is to design a dynamic linear filter such that the closed loop system is mean square stable and minimizes the stationary expected value of the mean square estimation error. It is shown that an explicit analytical solution to this optimal filtering problem is obtained from the stationary solution associated to a certain Riccati equation. It is also shown that the problem can be formulated using a linear matrix inequalities (LMI) approach, which can be extended to consider convex polytopic uncertainties on the parameters of the possible modes of operation of the system and on the transition rate matrix of the Markov process. As far as the authors are aware of this is the first time that this stationary filtering problem (exact and robust versions) for LSMJP with no knowledge of the Markov jump parameters is considered in the literature. Finally, we illustrate the results with an example.
Resumo:
Spatial data has now been used extensively in the Web environment, providing online customized maps and supporting map-based applications. The full potential of Web-based spatial applications, however, has yet to be achieved due to performance issues related to the large sizes and high complexity of spatial data. In this paper, we introduce a multiresolution approach to spatial data management and query processing such that the database server can choose spatial data at the right resolution level for different Web applications. One highly desirable property of the proposed approach is that the server-side processing cost and network traffic can be reduced when the level of resolution required by applications are low. Another advantage is that our approach pushes complex multiresolution structures and algorithms into the spatial database engine. That is, the developer of spatial Web applications needs not to be concerned with such complexity. This paper explains the basic idea, technical feasibility and applications of multiresolution spatial databases.
Resumo:
The present fundamental knowledge of fluid turbulence has been established primarily from hot- and cold-wire measurements. Unfortunately, however, these measurements necessarily suffer from contamination by noise since no certain method has previously been available to optimally filter noise from the measured signals. This limitation has impeded our progress of understanding turbulence profoundly. We address this limitation by presenting a simple, fast-convergent iterative scheme to digitally filter signals optimally and find Kolmogorov scales definitely. The great efficacy of the scheme is demonstrated by its application to the instantaneous velocity measured in a turbulent jet.
Resumo:
We develop a new iterative filter diagonalization (FD) scheme based on Lanczos subspaces and demonstrate its application to the calculation of bound-state and resonance eigenvalues. The new scheme combines the Lanczos three-term vector recursion for the generation of a tridiagonal representation of the Hamiltonian with a three-term scalar recursion to generate filtered states within the Lanczos representation. Eigenstates in the energy windows of interest can then be obtained by solving a small generalized eigenvalue problem in the subspace spanned by the filtered states. The scalar filtering recursion is based on the homogeneous eigenvalue equation of the tridiagonal representation of the Hamiltonian, and is simpler and more efficient than our previous quasi-minimum-residual filter diagonalization (QMRFD) scheme (H. G. Yu and S. C. Smith, Chem. Phys. Lett., 1998, 283, 69), which was based on solving for the action of the Green operator via an inhomogeneous equation. A low-storage method for the construction of Hamiltonian and overlap matrix elements in the filtered-basis representation is devised, in which contributions to the matrix elements are computed simultaneously as the recursion proceeds, allowing coefficients of the filtered states to be discarded once their contribution has been evaluated. Application to the HO2 system shows that the new scheme is highly efficient and can generate eigenvalues with the same numerical accuracy as the basic Lanczos algorithm.
Resumo:
The aim of the present study was to investigate the effect of high-pass filtering on TEOAE obtained from 2-month-old infants as a function of filter cut-off frequency, activity states and pass/fail status of infants. Two experiments were performed. In Experiment 1, 100 2-month-old infants (200 ears) in five activity states (asleep, awake but peaceful, sucking a pacifier, feeding, restless) were tested by use of TEOAE technology. Five different filter conditions were applied to the TEOAE responses post hoc. The filter conditions were set at 781 Hz (default setting), 1.0, 1.2, 1.4 and 1.6 kHz. Results from this experiment showed that TEOAE parameters, such as whole-wave reproducibility (WR) and signal-to-noise ratio (SNR) at 0.8 kHz and 1.6 kHz, changed as a function of the cut-off frequency. The findings suggest that the 1.6 kHz and 1.2 kHz filter conditions are optimal for WR and SNR pass/fail criteria, respectively. Although all infant recordings appeared to benefit from the filtering, infants in the noisy states seemed to benefit the most. In Experiment 2, the high-pass filtering technique was applied to 23 infants (35 ears) who apparently failed the TEOAE tests on initial screening but were subsequently awarded a pass status based on the results from a follow-up auditory brainstem response (ABR) assessment. The findings showed a significant decrease in noise contamination of the TEOAE with a corresponding significant increase in WR. With high-pass filtering at 1.6 kHz, 21/35 ears could be reclassified into the pass category.
Resumo:
A large area colour imager optically addressed is presented. The colour imager consists of a thin wide band gap p-i-n a-SiC:H filtering element deposited on the top of a thick large area a-SiC:H(-p)/a-Si:H(-i)/a-SiC:H(-n) image sensor, which reveals itself an intrinsic colour filter. In order to tune the external applied voltage for full colour discrimination the photocurrent generated by a modulated red light is measured under different optical and electrical bias. Results reveal that the integrated device behaves itself as an imager and a filter giving information not only on the position where the optical image is absorbed but also on it wavelength and intensity. The amplitude and sign of the image signals are electrically tuneable. In a wide range of incident fluxes and under reverse bias, the red and blue image signals are opposite in sign and the green signal is suppressed allowing blue and red colour recognition. The green information is obtained under forward bias, where the blue signal goes down to zero and the red and green remain constant. Combining the information obtained at this two applied voltages a RGB colour image picture can be acquired without the need of the usual colour filters or pixel architecture. A numerical simulation supports the colour filter analysis.