995 resultados para multiple regimes


Relevância:

100.00% 100.00%

Publicador:

Resumo:

The method of Fields and Backofen has been commonly used to reduce the data obtained by hot torsion test into flow curves. The method, however, is most suitable for materials with monotonic strain hardening behaviour. Other methods such as Stüwe’s method, tubular specimens, differential testing and the inverse method, each suffer from similar drawbacks. It is shown in the current work that for materials with multiple regimes of hardening any method based on an assumption of constant hardening indices introduces some errors into the flow curve obtained from the hot torsion test. Therefore such methods do not enable accurate prediction of onset of recrystallisation where slow softening occurs. A new method to convert results from the hot torsion test into flow curves by taking into account the variation of constitutive parameters during deformation is presented. The method represents the torque twist data by a parametric linear least square model in which Euler and hyperbolic coefficients are used as the parameters. A closed form relationship obtained from the mathematical representation of the data is employed next for flow stress determination. Two different solution strategies, the method of normal equations and singular value decomposition, were used for parametric modelling of the data with hyperbolic basis functions. The performance of both methods is compared. Experimental data obtained by FHTTM, a flexible hot torsion test machine developed at IROST, for a C–Mn austenitic steel was used to demonstrate the method. The results were compared with those obtained using constant strain and strain rate hardening characteristics.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

In a recent paper, Bai and Perron (1998) considered theoretical issues related to the limiting distribution of estimators and test statistics in the linear model with multiple structural changes. In this companion paper, we consider practical issues for the empirical applications of the procedures. We first address the problem of estimation of the break dates and present an efficient algorithm to obtain global minimizers of the sum of squared residuals. This algorithm is based on the principle of dynamic programming and requires at most least-squares operations of order O(T 2) for any number of breaks. Our method can be applied to both pure and partial structural-change models. Secondly, we consider the problem of forming confidence intervals for the break dates under various hypotheses about the structure of the data and the errors across segments. Third, we address the issue of testing for structural changes under very general conditions on the data and the errors. Fourth, we address the issue of estimating the number of breaks. We present simulation results pertaining to the behavior of the estimators and tests in finite samples. Finally, a few empirical applications are presented to illustrate the usefulness of the procedures. All methods discussed are implemented in a GAUSS program available upon request for non-profit academic use.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Hypervelocity impact of meteoroids and orbital debris poses a serious and growing threat to spacecraft. To study hypervelocity impact phenomena, a comprehensive ensemble of real-time concurrently operated diagnostics has been developed and implemented in the Small Particle Hypervelocity Impact Range (SPHIR) facility. This suite of simultaneously operated instrumentation provides multiple complementary measurements that facilitate the characterization of many impact phenomena in a single experiment. The investigation of hypervelocity impact phenomena described in this work focuses on normal impacts of 1.8 mm nylon 6/6 cylinder projectiles and variable thickness aluminum targets. The SPHIR facility two-stage light-gas gun is capable of routinely launching 5.5 mg nylon impactors to speeds of 5 to 7 km/s. Refinement of legacy SPHIR operation procedures and the investigation of first-stage pressure have improved the velocity performance of the facility, resulting in an increase in average impact velocity of at least 0.57 km/s. Results for the perforation area indicate the considered range of target thicknesses represent multiple regimes describing the non-monotonic scaling of target perforation with decreasing target thickness. The laser side-lighting (LSL) system has been developed to provide ultra-high-speed shadowgraph images of the impact event. This novel optical technique is demonstrated to characterize the propagation velocity and two-dimensional optical density of impact-generated debris clouds. Additionally, a debris capture system is located behind the target during every experiment to provide complementary information regarding the trajectory distribution and penetration depth of individual debris particles. The utilization of a coherent, collimated illumination source in the LSL system facilitates the simultaneous measurement of impact phenomena with near-IR and UV-vis spectrograph systems. Comparison of LSL images to concurrent IR results indicates two distinctly different phenomena. A high-speed, pressure-dependent IR-emitting cloud is observed in experiments to expand at velocities much higher than the debris and ejecta phenomena observed using the LSL system. In double-plate target configurations, this phenomena is observed to interact with the rear-wall several micro-seconds before the subsequent arrival of the debris cloud. Additionally, dimensional analysis presented by Whitham for blast waves is shown to describe the pressure-dependent radial expansion of the observed IR-emitting phenomena. Although this work focuses on a single hypervelocity impact configuration, the diagnostic capabilities and techniques described can be used with a wide variety of impactors, materials, and geometries to investigate any number of engineering and scientific problems.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

In this study the dynamics of flow over the blades of vertical axis wind turbines was investigated using a simplified periodic motion to uncover the fundamental flow physics and provide insight into the design of more efficient turbines. Time-resolved, two-dimensional velocity measurements were made with particle image velocimetry on a wing undergoing pitching and surging motion to mimic the flow on a turbine blade in a non-rotating frame. Dynamic stall prior to maximum angle of attack and a leading edge vortex development were identified in the phase-averaged flow field and captured by a simple model with five modes, including the first two harmonics of the pitch/surge frequency identified using the dynamic mode decomposition. Analysis of these modes identified vortical structures corresponding to both frequencies that led the separation and reattachment processes, while their phase relationship determined the evolution of the flow.

Detailed analysis of the leading edge vortex found multiple regimes of vortex development coupled to the time-varying flow field on the airfoil. The vortex was shown to grow on the airfoil for four convection times, before shedding and causing dynamic stall in agreement with 'optimal' vortex formation theory. Vortex shedding from the trailing edge was identified from instantaneous velocity fields prior to separation. This shedding was found to be in agreement with classical Strouhal frequency scaling and was removed by phase averaging, which indicates that it is not exactly coupled to the phase of the airfoil motion.

The flow field over an airfoil undergoing solely pitch motion was shown to develop similarly to the pitch/surge motion; however, flow separation took place earlier, corresponding to the earlier formation of the leading edge vortex. A similar reduced-order model to the pitch/surge case was developed, with similar vortical structures leading separation and reattachment; however, the relative phase lead of the separation mode, corresponding to earlier separation, necessitated that a third frequency to be incorporated into the reattachment mode to provide a relative lag in reattachment.

Finally, the results are returned to the rotating frame and the effects of each flow phenomena on the turbine are estimated, suggesting kinematic criteria for the design of improved turbines.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Se utiliza un modelo de innovaciones sesgadas para estudiar los efectos de cambios exógenos en la oferta laboral. En un contexto de innovaciones sesgadas, a medida que las economías acumulan capital, el trabajo se hace relativamente más escaso y más caro, por este motivo, hay incentivos para adoptar tecnologías ahorradoras de trabajo. Del mismo modo un cambio en la oferta laboral afecta la abundancia de factores y sus precios relativos. En general, una reducción de la oferta laboral, hace que el trabajo sea más caro y genera incentivos para cambio tecnológico ahorrador de trabajo. Así, el efecto inicial que tiene el cambio en la oferta laboral sobre los precios de los factores es mitigado por el cambio tecnológico. Finalmente, los movimientos en la remuneración a los factores afectan las decisiones de ahorro y, por lo tanto, la dinámica del crecimiento. En este trabajo se exploran las consecuencias de una reducción de la oferta laboral en dos contextos teóricos diferentes: un modelo de agentes homogéneos y horizonte infinito y un modelo de generaciones traslapadas.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

The problem of "model selection" for expressing a wide range of constitutive behaviour adequately using hot torsion test data was considered here using a heuristic approach. A model library including several nested parametric linear and non-linear models was considered and applied to a set of hot torsion test data for API-X 70 micro-alloyed steel with a range of strain rates and temperatures. A cost function comprising the modelled hot strength data and that of the measured data were utilized in a heuristic model selection scheme to identify the optimum models. It was shown that a non-linear rational model including ten parameters is an optimum model that can accurately express the multiple regimes of hardening and softening for the entire range of the experiment. The parameters for the optimum model were estimated and used for determining variations of hot strength of the samples with deformation.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

This paper investigates whether there is evidence of structural change in the Brazilian term structure of interest rates. Multivariate cointegration techniques are used to verify this evidence. Two econometrics models are estimated. The rst one is a Vector Autoregressive Model with Error Correction Mechanism (VECM) with smooth transition in the deterministic coe¢ cients (Ripatti and Saikkonen [25]). The second one is a VECM with abrupt structural change formulated by Hansen [13]. Two datasets were analysed. The rst one contains a nominal interest rate with maturity up to three years. The second data set focuses on maturity up to one year. The rst data set focuses on a sample period from 1995 to 2010 and the second from 1998 to 2010. The frequency is monthly. The estimated models suggest the existence of structural change in the Brazilian term structure. It was possible to document the existence of multiple regimes using both techniques for both databases. The risk premium for di¤erent spreads varied considerably during the earliest period of both samples and seemed to converge to stable and lower values at the end of the sample period. Long-term risk premiums seemed to converge to inter-national standards, although the Brazilian term structure is still subject to liquidity problems for longer maturities.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

In this paper, we propose a class of ACD-type models that accommodates overdispersion, intermittent dynamics, multiple regimes, and sign and size asymmetries in financial durations. In particular, our functional coefficient autoregressive conditional duration (FC-ACD) model relies on a smooth-transition autoregressive specification. The motivation lies on the fact that the latter yields a universal approximation if one lets the number of regimes grows without bound. After establishing that the sufficient conditions for strict stationarity do not exclude explosive regimes, we address model identifiability as well as the existence, consistency, and asymptotic normality of the quasi-maximum likelihood (QML) estimator for the FC-ACD model with a fixed number of regimes. In addition, we also discuss how to consistently estimate using a sieve approach a semiparametric variant of the FC-ACD model that takes the number of regimes to infinity. An empirical illustration indicates that our functional coefficient model is flexible enough to model IBM price durations.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Neolithic wetland sites in the Swiss Plateau provide an extraordinary database for the study of mobilities, entanglements and transformations in material culture. Based on dendrochronologically dated settlements between 3900 and 3500 BC, two regional pottery styles and their local variations are well known, Pfyn and Cortaillod. The vessels share the same habitus and were made of local raw materials. However, some vessels specific to other pottery styles are also present in the sites. By focusing on itineraries of vessels and shifts in pottery knowledge, their appropriation in different contexts and the resulting material entanglements, we want to approach the multiple regimes of mobility: At Lake Constance - known for Pfyn pottery - specific Michelsberg vessels like tulip beakers and lugged jars occur in small numbers. These travelling objects were produced with exogenous raw materials and transported to the sites from Southern Germany. At Concise (Lake Neuchâtel) besides the local Cortaillod pottery the whole repertoire of NMB pottery, characteristic for Eastern France, was also produced. Further cases from the same space-time frame point to other regimes of mobility. In our two PhD-projects we compare pottery practices - styles, techniques, raw materials - from over 20 key sites in the region. Based on Bourdieu’s reflexive anthropology, we apply different qualitative and quantitative archaeological and archaeometrical methods, thus striving for a deeper understanding of habitus and the transformative potential of moving people, objects and ideas on local and regional scales and related social contexts.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Miniaturization of power generators to the MEMS scale, based on the hydrogen-air fuel cell, is the object of this research. The micro fuel cell approach has been adopted for advantages of both high power and energy densities. On-board hydrogen production/storage and an efficient control scheme that facilitates integration with a fuel cell membrane electrode assembly (MEA) are key elements for micro energy conversion. Millimeter-scale reactors (ca. 10 µL) have been developed, for hydrogen production through hydrolysis of CaH2 and LiAlH4, to yield volumetric energy densities of the order of 200 Whr/L. Passive microfluidic control schemes have been implemented in order to facilitate delivery, self-regulation, and at the same time eliminate bulky auxiliaries that run on parasitic power. One technique uses surface tension to pump water in a microchannel for hydrolysis and is self-regulated, based on load, by back pressure from accumulated hydrogen acting on a gas-liquid microvalve. This control scheme improves uniformity of power delivery during long periods of lower power demand, with fast switching to mass transport regime on the order of seconds, thus providing peak power density of up to 391.85 W/L. Another method takes advantage of water recovery by backward transport through the MEA, of water vapor that is generated at the cathode half-cell reaction. This regulation-free scheme increases available reactor volume to yield energy density of 313 Whr/L, and provides peak power density of 104 W/L. Prototype devices have been tested for a range of duty periods from 2-24 hours, with multiple switching of power demand in order to establish operation across multiple regimes. Issues identified as critical to the realization of the integrated power MEMS include effects of water transport and byproduct hydrate swelling on hydrogen production in the micro reactor, and ambient relative humidity on fuel cell performance.

Relevância:

40.00% 40.00%

Publicador:

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Experimental and simulation studies have uncovered at least two anomalous concentration regimes in water-dimethyl sulfoxide (DMSO) binary mixture whose precise origin has remained a subject of debate. In order to facilitate time domain experimental investigation of the dynamics of such binary mixtures, we explore strength or extent of influence of these anomalies in dipolar solvation dynamics by carrying out long molecular dynamics simulations over a wide range of DMSO concentration. The solvation time correlation function so calculated indeed displays strong composition dependent anomalies, reflected in pronounced non-exponential kinetics and non-monotonous composition dependence of the average solvation time constant. In particular, we find remarkable slow-down in the solvation dynamics around 10%-20% and 35%-50% mole percentage. We investigate microscopic origin of these two anomalies. The population distribution analyses of different structural morphology elucidate that these two slowing down are reflections of intriguing structural transformations in water-DMSO mixture. The structural transformations themselves can be explained in terms of a change in the relative coordination number of DMSO and water molecules, from 1DMSO:2H(2)O to 1H(2)O:1DMSO and 1H(2)O:2DMSO complex formation. Thus, while the emergence of first slow down (at 15% DMSO mole percentage) is due to the percolation among DMSO molecules supported by the water molecules (whose percolating network remains largely unaffected), the 2nd anomaly (centered on 40%-50%) is due to the formation of the network structure where the unit of 1DMSO:1H(2)O and 2DMSO:1H(2)O dominates to give rise to rich dynamical features. Through an analysis of partial solvation dynamics an interesting negative cross-correlation between water and DMSO is observed that makes an important contribution to relaxation at intermediate to longer times.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Experimental studies (circular dichroism and ultra-violet (UV) absorption spectra) and large scale atomistic molecular dynamics simulations (accompanied by order parameter analyses) are combined to establish a number of remarkable (and unforeseen) structural transformations of protein myoglobin in aqueous ethanol mixture at various ethanol concentrations. The following results are particularly striking. (1) Two well-defined structural regimes, one at x(EtOH) similar to 0.05 and the other at x(EtOH) similar to 0.25, characterized by formation of distinct partially folded conformations and separated by a unique partially unfolded intermediate state at x(EtOH) similar to 0.15, are identified. (2) Existence of non-monotonic composition dependence of (i) radius of gyration, (ii) long range contact order, (iii) residue specific solvent accessible surface area of tryptophan, and (iv) circular dichroism spectra and UV-absorption peaks are observed. Interestingly at x(EtOH) similar to 0.15, time averaged value of the contact order parameter of the protein reaches a minimum, implying that this conformational state can be identified as a molten globule state. Multiple structural transformations well known in water-ethanol binary mixture appear to have considerably stronger effects on conformation and dynamics of the protein. We compare the present results with studies in water-dimethyl sulfoxide mixture where also distinct structural transformations are observed along with variation of co-solvent composition. (C) 2015 AIP Publishing LLC.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Published as an article in: Studies in Nonlinear Dynamics & Econometrics, 2004, vol. 8, issue 1, pages 5.