938 resultados para multiple reaction model
Resumo:
Multiple reaction monitoring (MRM) mass spectrometry coupled with stable isotope dilution (SID) and liquid chromatography (LC) is increasingly used in biological and clinical studies for precise and reproducible quantification of peptides and proteins in complex sample matrices. Robust LC-SID-MRM-MS-based assays that can be replicated across laboratories and ultimately in clinical laboratory settings require standardized protocols to demonstrate that the analysis platforms are performing adequately. We developed a system suitability protocol (SSP), which employs a predigested mixture of six proteins, to facilitate performance evaluation of LC-SID-MRM-MS instrument platforms, configured with nanoflow-LC systems interfaced to triple quadrupole mass spectrometers. The SSP was designed for use with low multiplex analyses as well as high multiplex approaches when software-driven scheduling of data acquisition is required. Performance was assessed by monitoring of a range of chromatographic and mass spectrometric metrics including peak width, chromatographic resolution, peak capacity, and the variability in peak area and analyte retention time (RT) stability. The SSP, which was evaluated in 11 laboratories on a total of 15 different instruments, enabled early diagnoses of LC and MS anomalies that indicated suboptimal LC-MRM-MS performance. The observed range in variation of each of the metrics scrutinized serves to define the criteria for optimized LC-SID-MRM-MS platforms for routine use, with pass/fail criteria for system suitability performance measures defined as peak area coefficient of variation <0.15, peak width coefficient of variation <0.15, standard deviation of RT <0.15 min (9 s), and the RT drift <0.5min (30 s). The deleterious effect of a marginally performing LC-SID-MRM-MS system on the limit of quantification (LOQ) in targeted quantitative assays illustrates the use and need for a SSP to establish robust and reliable system performance. Use of a SSP helps to ensure that analyte quantification measurements can be replicated with good precision within and across multiple laboratories and should facilitate more widespread use of MRM-MS technology by the basic biomedical and clinical laboratory research communities.
Resumo:
The mass spectrometry technique of multiple reaction monitoring (MRM) was used to quantify and compare the expression level of lactoferrin in tear films among control, prostate cancer (CaP), and benign prostate hyperplasia (BPH) groups. Tear samples from 14 men with CaP, 15 men with BPH, and 14 controls were analyzed in the study. Collected tears (2 μl) of each sample were digested with trypsin overnight at 37 °C without any pretreatment, and tear lactoferrin was quantified using a lactoferrin-specific peptide, VPSHAVVAR, both using natural/light and isotopic-labeled/heavy peptides with MRM. The average tear lactoferrin concentration was 1.01 ± 0.07 μg/μl in control samples, 0.96 ± 0.07 μg/μl in the BPH group, and 0.98 ± 0.07 μg/μl in the CaP group. Our study is the first to quantify tear proteins using a total of 43 individual (non-pooled) tear samples and showed that direct digestion of tear samples is suitable for MRM studies. The calculated average lactoferrin concentration in the control group matched that in the published range of human tear lactoferrin concentration measured by enzyme-linked immunosorbent assay (ELISA). Moreover, the lactoferrin was stably expressed across all of the samples, with no significant differences being observed among the control, BPH, and CaP groups.
Resumo:
采用高精度的ENO格式和基于基元化学反应的真实化学反应模型求解氢氧混合气体一维爆轰波的精细结构。采用直接起爆方法得到稳定传播的爆轰波,计算的爆轰波阵面参数和实验相当符合。对爆轰波反应区化学反应的研究表明,参与反应的不同组分具有不同类型的变化特征。网格尺寸影响的研究表明,计算结果的精度随着网格尺寸的增加而增加,并能保持较好的收敛性。移动网格研究结果表明,网格运动速度和爆轰速度接近时,两者的相互作用对计算结果产生一定影响。
Resumo:
We have a developed a multiple-radical model of the chemical modification reactions involving oxygen and thiols relevant to the interactions of ionizing radiations with DNA. The treatment is based on the Alper and Howard-Flanders equation but considers the case where more than one radical may be involved in the production of lesions in DNA. This model makes several predictions regarding the induction of double strand breaks in DNA by ionizing radiation and the role of sensitizers such as oxygen and protectors such as thiols which act at the chemical phase of radiation action via the involvement of free radicals. The model predicts a decreasing OER with increasing LET on the basis that as radical multiplicity increases so will the probability that, even under hypoxia, damage will be fixed and lead to lesion production. The model can be considered to provide an alternative hypothesis to those of 'interacting radicals' or of 'oxygen-in-the-track'.
Resumo:
Dissertação de Mestrado, Gestão da Água e da Costa, Faculdade de Ciências e Tecnologia, Universidade do Algarve, 2010
Resumo:
Targeted peptide methods generally use HPLC-MS/MRM approaches. Although dependent on the instrumental resolution, interferences may occur while performing analysis of complex biological matrices. HPLC-MS/MRM3 is a technique, which provides a significantly better selectivity, compared with HPLC-MS/MRM assay. HPLC-MS/MRM3 allows the detection and quantitation by enriching standard MRM with secondary product ions that are generated within the linear ion trap. Substance P (SP) and neurokinin A (NKA) are tachykinin peptides playing a central role in pain transmission. The objective of this study was to verify whether HPLC-HPLCMS/ MRM3 could provide significant advantages over a more traditional HPLC-MS/MRM assay for the quantification of SP and NKA in rat spinal cord. The results suggest that reconstructed MRM3 chromatograms display significant improvements with the nearly complete elimination of interfering peaks but the sensitivity (i.e. signal-to-noise ratio) was severely reduced. The precision (%CV) observed was between 3.5% - 24.1% using HPLC-MS/MRM and in the range of 4.3% - 13.1% with HPLC-MS/MRM3, for SP and NKA. The observed accuracy was within 10% of the theoretical concentrations tested. HPLC-MS/MRM3 may improve the assay sensitivity to detect difference between samples by reducing significantly the potential of interferences and therefore reduce instrumental errors.
Resumo:
The cardiac sodium current (INa) is responsible for the rapid depolarization of cardiac cells, thus allowing for their contraction. It is also involved in regulating the duration of the cardiac action potential (AP) and propagation of the impulse throughout the myocardium. Cardiac INa is generated by the voltage-gated Na(+) channel, NaV1.5, a 2016-residue protein which forms the pore of the channel. Over the past years, hundreds of mutations in SCN5A, the human gene coding for NaV1.5, have been linked to many cardiac electrical disorders, including the congenital and acquired long QT syndrome, Brugada syndrome, conduction slowing, sick sinus syndrome, atrial fibrillation, and dilated cardiomyopathy. Similar to many membrane proteins, NaV1.5 has been found to be regulated by several interacting proteins. In some cases, these different proteins, which reside in distinct membrane compartments (i.e. lateral membrane vs. intercalated disks), have been shown to interact with the same regulatory domain of NaV1.5, thus suggesting that several pools of NaV1.5 channels may co-exist in cardiac cells. The aim of this review article is to summarize the recent works that demonstrate its interaction with regulatory proteins and illustrate the model that the sodium channel NaV1.5 resides in distinct and different pools in cardiac cells. This article is part of a Special Issue entitled: Cardiomyocyte Biology: Cardiac Pathways of Differentiation, Metabolism and Contraction.
Resumo:
Detailed knowledge of the characteristics of the radiation field shaped by a multileaf collimator (MLC) is essential in intensity modulated radiotherapy (IMRT). A previously developed multiple source model (MSM) for a 6 MV beam was extended to a 15 MV beam and supplemented with an accurate model of an 80-leaf dynamic MLC. Using the supplemented MSM and the MC code GEANT, lateral dose distributions were calculated in a water phantom and a portal water phantom. A field which is normally used for the validation of the step and shoot technique and a field from a realistic IMRT treatment plan delivered with dynamic MLC are investigated. To assess possible spectral changes caused by the modulation of beam intensity by an MLC, the energy spectra in five portal planes were calculated for moving slits of different widths. The extension of the MSM to 15 MV was validated by analysing energy fluences, depth doses and dose profiles. In addition, the MC-calculated primary energy spectrum was verified with an energy spectrum which was reconstructed from transmission measurements. MC-calculated dose profiles using the MSM for the step and shoot case and for the dynamic MLC case are in very good agreement with the measured data from film dosimetry. The investigation of a 13 cm wide field shows an increase in mean photon energy of up to 16% for the 0.25 cm slit compared to the open beam for 6 MV and of up to 6% for 15 MV, respectively. In conclusion, the MSM supplemented with the dynamic MLC has proven to be a powerful tool for investigational and benchmarking purposes or even for dose calculations in IMRT.
Resumo:
A multiple source model (MSM) for the 6 MV beam of a Varian Clinac 2300 C/D was developed by simulating radiation transport through the accelerator head for a set of square fields using the GEANT Monte Carlo (MC) code. The corresponding phase space (PS) data enabled the characterization of 12 sources representing the main components of the beam defining system. By parametrizing the source characteristics and by evaluating the dependence of the parameters on field size, it was possible to extend the validity of the model to arbitrary rectangular fields which include the central 3 x 3 cm2 field without additional precalculated PS data. Finally, a sampling procedure was developed in order to reproduce the PS data. To validate the MSM, the fluence, energy fluence and mean energy distributions determined from the original and the reproduced PS data were compared and showed very good agreement. In addition, the MC calculated primary energy spectrum was verified by an energy spectrum derived from transmission measurements. Comparisons of MC calculated depth dose curves and profiles, using original and PS data reproduced by the MSM, agree within 1% and 1 mm. Deviations from measured dose distributions are within 1.5% and 1 mm. However, the real beam leads to some larger deviations outside the geometrical beam area for large fields. Calculated output factors in 10 cm water depth agree within 1.5% with experimentally determined data. In conclusion, the MSM produces accurate PS data for MC photon dose calculations for the rectangular fields specified.
Resumo:
Purpose The purpose of this study was to investigate multiple indirect Big Five personality influences on professionals’ annual salary while considering relevant mediators. These are the motivational variables of occupational self-efficacy and career-advancement goals, and the work status variable of contractual work hours. The motivational and work status variables were conceptualized as serial mediators (Big Five → occupational self-efficacy/career-advancement goals → contractual work hours → annual salary). Design/Methodology/Approach We realized a 4 year longitudinal survey study with 432 participants and three points of measurement. We assessed personality prior to the mediators and the mediators prior to annual salary. Findings Results showed that except for openness the other Big Five personality traits exerted indirect influences on annual salary. Career-advancement goals mediated influences of conscientiousness (+), extraversion (+), and agreeableness (−). Occupational self-efficacy mediated influences of neuroticism (–) and conscientiousness (+). Because the influence of occupational self-efficacy on annual salary was fully mediated by contractual work hours, indirect personality influences via occupational self-efficacy always included contractual work hours in a serial mediation. Implications These findings underline the importance of distal personality traits for career success. They give further insights into direct and indirect relationships between personality, goal content, self-efficacy beliefs, and an individual’s career progress. Originality/Value Previous research predominantly investigated direct Big Five influences on salary, and it analyzed cross-sectional data. This study is one of the first to investigate multiple indirect Big Five influences on salary in a longitudinal design. The findings support process-oriented theories of personality influences on career outcomes.