958 resultados para multiple classifiers integration
Resumo:
This paper addresses the following predictive business process monitoring problem: Given the execution trace of an ongoing case,and given a set of traces of historical (completed) cases, predict the most likely outcome of the ongoing case. In this context, a trace refers to a sequence of events with corresponding payloads, where a payload consists of a set of attribute-value pairs. Meanwhile, an outcome refers to a label associated to completed cases, like, for example, a label indicating that a given case completed “on time” (with respect to a given desired duration) or “late”, or a label indicating that a given case led to a customer complaint or not. The paper tackles this problem via a two-phased approach. In the first phase, prefixes of historical cases are encoded using complex symbolic sequences and clustered. In the second phase, a classifier is built for each of the clusters. To predict the outcome of an ongoing case at runtime given its (uncompleted) trace, we select the closest cluster(s) to the trace in question and apply the respective classifier(s), taking into account the Euclidean distance of the trace from the center of the clusters. We consider two families of clustering algorithms – hierarchical clustering and k-medoids – and use random forests for classification. The approach was evaluated on four real-life datasets.
Resumo:
In many domains when we have several competing classifiers available we want to synthesize them or some of them to get a more accurate classifier by a combination function. In this paper we propose a ‘class-indifferent’ method for combining classifier decisions represented by evidential structures called triplet and quartet, using Dempster's rule of combination. This method is unique in that it distinguishes important elements from the trivial ones in representing classifier decisions, makes use of more information than others in calculating the support for class labels and provides a practical way to apply the theoretically appealing Dempster–Shafer theory of evidence to the problem of ensemble learning. We present a formalism for modelling classifier decisions as triplet mass functions and we establish a range of formulae for combining these mass functions in order to arrive at a consensus decision. In addition we carry out a comparative study with the alternatives of simplet and dichotomous structure and also compare two combination methods, Dempster's rule and majority voting, over the UCI benchmark data, to demonstrate the advantage our approach offers. (A continuation of the work in this area that was published in IEEE Trans on KDE, and conferences)
Resumo:
In this paper a multiple classifier machine learning methodology for Predictive Maintenance (PdM) is presented. PdM is a prominent strategy for dealing with maintenance issues given the increasing need to minimize downtime and associated costs. One of the challenges with PdM is generating so called ’health factors’ or quantitative indicators of the status of a system associated with a given maintenance issue, and determining their relationship to operating costs and failure risk. The proposed PdM methodology allows dynamical decision rules to be adopted for maintenance management and can be used with high-dimensional and censored data problems. This is achieved by training multiple classification modules with different prediction horizons to provide different performance trade-offs in terms of frequency of unexpected breaks and unexploited lifetime and then employing this information in an operating cost based maintenance decision system to minimise expected costs. The effectiveness of the methodology is demonstrated using a simulated example and a benchmark semiconductor manufacturing maintenance problem.
Resumo:
A real-time large scale part-to-part video matching algorithm, based on the cross correlation of the intensity of motion curves, is proposed with a view to originality recognition, video database cleansing, copyright enforcement, video tagging or video result re-ranking. Moreover, it is suggested how the most representative hashes and distance functions - strada, discrete cosine transformation, Marr-Hildreth and radial - should be integrated in order for the matching algorithm to be invariant against blur, compression and rotation distortions: (R; _) 2 [1; 20]_[1; 8], from 512_512 to 32_32pixels2 and from 10 to 180_. The DCT hash is invariant against blur and compression up to 64x64 pixels2. Nevertheless, although its performance against rotation is the best, with a success up to 70%, it should be combined with the Marr-Hildreth distance function. With the latter, the image selected by the DCT hash should be at a distance lower than 1.15 times the Marr-Hildreth minimum distance.
Resumo:
This paper proposes a method to locate and track people by combining evidence from multiple cameras using the homography constraint. The proposed method use foreground pixels from simple background subtraction to compute evidence of the location of people on a reference ground plane. The algorithm computes the amount of support that basically corresponds to the ""foreground mass"" above each pixel. Therefore, pixels that correspond to ground points have more support. The support is normalized to compensate for perspective effects and accumulated on the reference plane for all camera views. The detection of people on the reference plane becomes a search for regions of local maxima in the accumulator. Many false positives are filtered by checking the visibility consistency of the detected candidates against all camera views. The remaining candidates are tracked using Kalman filters and appearance models. Experimental results using challenging data from PETS`06 show good performance of the method in the presence of severe occlusion. Ground truth data also confirms the robustness of the method. (C) 2010 Elsevier B.V. All rights reserved.
Resumo:
MOTIVATION: The integration of multiple datasets remains a key challenge in systems biology and genomic medicine. Modern high-throughput technologies generate a broad array of different data types, providing distinct-but often complementary-information. We present a Bayesian method for the unsupervised integrative modelling of multiple datasets, which we refer to as MDI (Multiple Dataset Integration). MDI can integrate information from a wide range of different datasets and data types simultaneously (including the ability to model time series data explicitly using Gaussian processes). Each dataset is modelled using a Dirichlet-multinomial allocation (DMA) mixture model, with dependencies between these models captured through parameters that describe the agreement among the datasets. RESULTS: Using a set of six artificially constructed time series datasets, we show that MDI is able to integrate a significant number of datasets simultaneously, and that it successfully captures the underlying structural similarity between the datasets. We also analyse a variety of real Saccharomyces cerevisiae datasets. In the two-dataset case, we show that MDI's performance is comparable with the present state-of-the-art. We then move beyond the capabilities of current approaches and integrate gene expression, chromatin immunoprecipitation-chip and protein-protein interaction data, to identify a set of protein complexes for which genes are co-regulated during the cell cycle. Comparisons to other unsupervised data integration techniques-as well as to non-integrative approaches-demonstrate that MDI is competitive, while also providing information that would be difficult or impossible to extract using other methods.
Resumo:
The research on multiple classifiers systems includes the creation of an ensemble of classifiers and the proper combination of the decisions. In order to combine the decisions given by classifiers, methods related to fixed rules and decision templates are often used. Therefore, the influence and relationship between classifier decisions are often not considered in the combination schemes. In this paper we propose a framework to combine classifiers using a decision graph under a random field model and a game strategy approach to obtain the final decision. The results of combining Optimum-Path Forest (OPF) classifiers using the proposed model are reported, obtaining good performance in experiments using simulated and real data sets. The results encourage the combination of OPF ensembles and the framework to design multiple classifier systems. © 2011 Springer-Verlag.
Resumo:
This thesis investigates face recognition in video under the presence of large pose variations. It proposes a solution that performs simultaneous detection of facial landmarks and head poses across large pose variations, employs discriminative modelling of feature distributions of faces with varying poses, and applies fusion of multiple classifiers to pose-mismatch recognition. Experiments on several benchmark datasets have demonstrated that improved performance is achieved using the proposed solution.
Resumo:
Nos últimos anos, duas espécies de lagostas sapateiras, Scyllarides brasiliensis e S. deceptor, vêm se destacando nos desembarques pesqueiros de lagostas do Atlântico Sul Ocidental. Para espécies comercialmente importantes, o desenvolvimento de estudos que permitam conhecer a variabilidade e entender a dinâmica populacional é fundamental. Assim, o objetivo do primeiro capítulo desta tese foi avaliar a diversidade genética e a estrutura populacional dessas duas lagostas ao longo de aprox. 2.800 km da costa da América do Sul. Para as análises, foram empregados marcadores mitocondriais (citocromo oxidase I: COI; e a região controle: RC) e marcadores nucleares (13 loci de microssatélites desenvolvidos nesta tese). As duas espécies apresentaram altos níveis de variabilidade (S. deceptor: N = 200, mtDNA: h > 0,841, π > 0,005; microssatélites: He = 0,685; S. brasiliensis: N = 211, He = 0,554), distribuídos homogeneamente entre as localidades (S. deceptor: ΦST < -0,004, ΦCT < 0,016, FST global = 0,001, Dest global = 0,003, FCT < 0,002, P > 0,05, K = 1; S. brasiliensis: FST global = 0,004, Dest global = 0,001, FCT < 0,004, P > 0,05, K = 1). A ausência de estruturação nas duas espécies pode estar relacionada a características biológicas que promovem a conectividade entre localidades geograficamente distantes, como alta fecundidade e alto potencial de dispersão das larvas planctônicas. Além disso, os dados mitocondriais sugerem que a história demográfica de S. deceptor foi marcada por eventos de expansão populacionais e geográficos possivelmente relacionados às condições ambientais favoráveis dos episódios interglaciais do Pleistoceno Médio-Tardio. Diversos estudos têm mostrado que os fenômenos de inserção de regiões mitocondriais no DNA nuclear (NuMts) e heteroplasmia limitam a correta amplificação e identificação dos marcadores mitocondriais. Em estudos filogenéticos e de genética de populações, a presença inadvertida de sequências de diversas origens viola o principio de ortologia, o que pode resultar em inferências evolutivas erradas. Assim, o objetivo do segundo capítulo desta tese foi identificar e caracterizar os possíveis NuMts e sequências heteroplásmicas de três regiões mitocondriais (COI, RC e o gene da subunidade maior do RNA ribossomal: 16S) em quatro espécies do gênero Scyllarides (S. aequinoctialis, S. brasiliensis, S. deceptor e S. delfosi). A clonagem e sequenciamento de extratos de DNA genômico e DNA enriquecido com mtDNA revelaram que os genomas destas espécies podem exibir NuMts (que divergem entre 0,6 e 17,6% do mtDNA) e heteroplasmia (que divergem < 0,2% do mtDNA prevalente). Os NuMts surgiram possivelmente de vários eventos independentes de integração ao núcleo ao longo da história evolutiva do gênero Scyllarides. Dependendo do seu grau de similaridade com o mtDNA, a presença de NuMts nas análises filogenéticas no nível de gênero pode causar superestimativa do número de espécies e alterações nos comprimentos dos ramos e nas relações filogenéticas entre espécies.
Resumo:
讨论基于多种分类方法的模块组合实现的混合模式识别系统,它不同于利用多分类器输出结果表决的集成系统.提出两个系统:一个面向印刷体汉字文本识别,另一个面向自由手写体数字识别.利用多种特征和多种分类方法的组合、部分识别信息控制混淆字判别策略以及提出的动态模板库匹配后处理方法,使系统的性能与传统单一分类器系统比较,获得明显改善.实验表明:多方法多策略混合是解决复杂和增强系统鲁棒性的一条途径
Resumo:
Dans l'apprentissage machine, la classification est le processus d’assigner une nouvelle observation à une certaine catégorie. Les classifieurs qui mettent en œuvre des algorithmes de classification ont été largement étudié au cours des dernières décennies. Les classifieurs traditionnels sont basés sur des algorithmes tels que le SVM et les réseaux de neurones, et sont généralement exécutés par des logiciels sur CPUs qui fait que le système souffre d’un manque de performance et d’une forte consommation d'énergie. Bien que les GPUs puissent être utilisés pour accélérer le calcul de certains classifieurs, leur grande consommation de puissance empêche la technologie d'être mise en œuvre sur des appareils portables tels que les systèmes embarqués. Pour rendre le système de classification plus léger, les classifieurs devraient être capable de fonctionner sur un système matériel plus compact au lieu d'un groupe de CPUs ou GPUs, et les classifieurs eux-mêmes devraient être optimisés pour ce matériel. Dans ce mémoire, nous explorons la mise en œuvre d'un classifieur novateur sur une plate-forme matérielle à base de FPGA. Le classifieur, conçu par Alain Tapp (Université de Montréal), est basé sur une grande quantité de tables de recherche qui forment des circuits arborescents qui effectuent les tâches de classification. Le FPGA semble être un élément fait sur mesure pour mettre en œuvre ce classifieur avec ses riches ressources de tables de recherche et l'architecture à parallélisme élevé. Notre travail montre que les FPGAs peuvent implémenter plusieurs classifieurs et faire les classification sur des images haute définition à une vitesse très élevée.
Resumo:
La diversification des résultats de recherche (DRR) vise à sélectionner divers documents à partir des résultats de recherche afin de couvrir autant d’intentions que possible. Dans les approches existantes, on suppose que les résultats initiaux sont suffisamment diversifiés et couvrent bien les aspects de la requête. Or, on observe souvent que les résultats initiaux n’arrivent pas à couvrir certains aspects. Dans cette thèse, nous proposons une nouvelle approche de DRR qui consiste à diversifier l’expansion de requête (DER) afin d’avoir une meilleure couverture des aspects. Les termes d’expansion sont sélectionnés à partir d’une ou de plusieurs ressource(s) suivant le principe de pertinence marginale maximale. Dans notre première contribution, nous proposons une méthode pour DER au niveau des termes où la similarité entre les termes est mesurée superficiellement à l’aide des ressources. Quand plusieurs ressources sont utilisées pour DER, elles ont été uniformément combinées dans la littérature, ce qui permet d’ignorer la contribution individuelle de chaque ressource par rapport à la requête. Dans la seconde contribution de cette thèse, nous proposons une nouvelle méthode de pondération de ressources selon la requête. Notre méthode utilise un ensemble de caractéristiques qui sont intégrées à un modèle de régression linéaire, et génère à partir de chaque ressource un nombre de termes d’expansion proportionnellement au poids de cette ressource. Les méthodes proposées pour DER se concentrent sur l’élimination de la redondance entre les termes d’expansion sans se soucier si les termes sélectionnés couvrent effectivement les différents aspects de la requête. Pour pallier à cet inconvénient, nous introduisons dans la troisième contribution de cette thèse une nouvelle méthode pour DER au niveau des aspects. Notre méthode est entraînée de façon supervisée selon le principe que les termes reliés doivent correspondre au même aspect. Cette méthode permet de sélectionner des termes d’expansion à un niveau sémantique latent afin de couvrir autant que possible différents aspects de la requête. De plus, cette méthode autorise l’intégration de plusieurs ressources afin de suggérer des termes d’expansion, et supporte l’intégration de plusieurs contraintes telles que la contrainte de dispersion. Nous évaluons nos méthodes à l’aide des données de ClueWeb09B et de trois collections de requêtes de TRECWeb track et montrons l’utilité de nos approches par rapport aux méthodes existantes.
Resumo:
Ensemble learning techniques generate multiple classifiers, so called base classifiers, whose combined classification results are used in order to increase the overall classification accuracy. In most ensemble classifiers the base classifiers are based on the Top Down Induction of Decision Trees (TDIDT) approach. However, an alternative approach for the induction of rule based classifiers is the Prism family of algorithms. Prism algorithms produce modular classification rules that do not necessarily fit into a decision tree structure. Prism classification rulesets achieve a comparable and sometimes higher classification accuracy compared with decision tree classifiers, if the data is noisy and large. Yet Prism still suffers from overfitting on noisy and large datasets. In practice ensemble techniques tend to reduce the overfitting, however there exists no ensemble learner for modular classification rule inducers such as the Prism family of algorithms. This article describes the first development of an ensemble learner based on the Prism family of algorithms in order to enhance Prism’s classification accuracy by reducing overfitting.