920 resultados para multiple classification analysis
Resumo:
Bibliographical footnotes.
Resumo:
AMS subject classification: 90C29.
Resumo:
When continuous data are coded to categorical variables, two types of coding are possible: crisp coding in the form of indicator, or dummy, variables with values either 0 or 1; or fuzzy coding where each observation is transformed to a set of "degrees of membership" between 0 and 1, using co-called membership functions. It is well known that the correspondence analysis of crisp coded data, namely multiple correspondence analysis, yields principal inertias (eigenvalues) that considerably underestimate the quality of the solution in a low-dimensional space. Since the crisp data only code the categories to which each individual case belongs, an alternative measure of fit is simply to count how well these categories are predicted by the solution. Another approach is to consider multiple correspondence analysis equivalently as the analysis of the Burt matrix (i.e., the matrix of all two-way cross-tabulations of the categorical variables), and then perform a joint correspondence analysis to fit just the off-diagonal tables of the Burt matrix - the measure of fit is then computed as the quality of explaining these tables only. The correspondence analysis of fuzzy coded data, called "fuzzy multiple correspondence analysis", suffers from the same problem, albeit attenuated. Again, one can count how many correct predictions are made of the categories which have highest degree of membership. But here one can also defuzzify the results of the analysis to obtain estimated values of the original data, and then calculate a measure of fit in the familiar percentage form, thanks to the resultant orthogonal decomposition of variance. Furthermore, if one thinks of fuzzy multiple correspondence analysis as explaining the two-way associations between variables, a fuzzy Burt matrix can be computed and the same strategy as in the crisp case can be applied to analyse the off-diagonal part of this matrix. In this paper these alternative measures of fit are defined and applied to a data set of continuous meteorological variables, which are coded crisply and fuzzily into three categories. Measuring the fit is further discussed when the data set consists of a mixture of discrete and continuous variables.
Resumo:
The generalization of simple correspondence analysis, for two categorical variables, to multiple correspondence analysis where they may be three or more variables, is not straighforward, both from a mathematical and computational point of view. In this paper we detail the exact computational steps involved in performing a multiple correspondence analysis, including the special aspects of adjusting the principal inertias to correct the percentages of inertia, supplementary points and subset analysis. Furthermore, we give the algorithm for joint correspondence analysis where the cross-tabulations of all unique pairs of variables are analysed jointly. The code in the R language for every step of the computations is given, as well as the results of each computation.
Resumo:
In the analysis of multivariate categorical data, typically the analysis of questionnaire data, it is often advantageous, for substantive and technical reasons, to analyse a subset of response categories. In multiple correspondence analysis, where each category is coded as a column of an indicator matrix or row and column of Burt matrix, it is not correct to simply analyse the corresponding submatrix of data, since the whole geometric structure is different for the submatrix . A simple modification of the correspondence analysis algorithm allows the overall geometric structure of the complete data set to be retained while calculating the solution for the selected subset of points. This strategy is useful for analysing patterns of response amongst any subset of categories and relating these patterns to demographic factors, especially for studying patterns of particular responses such as missing and neutral responses. The methodology is illustrated using data from the International Social Survey Program on Family and Changing Gender Roles in 1994.
Resumo:
This paper presents findings from a study investigating a firm s ethical practices along the value chain. In so doing we attempt to better understand potential relationships between a firm s ethical stance with its customers and those of its suppliers within a supply chain and identify particular sectoral and cultural influences that might impinge on this. Drawing upon a database comprising of 667 industrial firms from 27 different countries, we found that ethical practices begin with the firm s relationship with its customers, the characteristics of which then influence the ethical stance with the firm s suppliers within the supply chain. Importantly, market structure along with some key cultural characteristics were also found to exert significant influence on the implementation of ethical policies in these firms.
Multiple scales analysis of nonlinear oscillations of a portal frame foundation for several machines
Resumo:
An analytical study of the nonlinear vibrations of a multiple machines portal frame foundation is presented. Two unbalanced rotating machines are considered, none of them resonant with the lower natural frequencies of the supporting structure. Their combined frequencies is set in such a way as to excite, due to nonlinear behavior of the frame, either the first anti-symmetrical mode (sway) or the first symmetrical mode. The physical and geometrical characteristics of the frame are chosen to tune the natural frequencies of these two modes into a 1:2 internal resonance. The problem is reduced to a two degrees of freedom model and its nonlinear equations of motions are derived via a Lagrangian approach. Asymptotic perturbation solutions of these equations are obtained via the Multiple Scales Method.
Resumo:
Transitional cell carcinoma (TCC) of the urothelium is often multifocal and subsequent tumors may occur anywhere in the urinary tract after the treatment of a primary carcinoma. Patients initially presenting a bladder cancer are at significant risk of developing metachronous tumors in the upper urinary tract (UUT). We evaluated the prognostic factors of primary invasive bladder cancer that may predict a metachronous UUT TCC after radical cystectomy. The records of 476 patients who underwent radical cystectomy for primary invasive bladder TCC from 1989 to 2001 were reviewed retrospectively. The prognostic factors of UUT TCC were determined by multivariate analysis using the COX proportional hazards regression model. Kaplan-Meier analysis was also used to assess the variable incidence of UUT TCC according to different risk factors. Twenty-two patients (4.6%). developed metachronous UUT TCC. Multiplicity, prostatic urethral involvement by the bladder cancer and the associated carcinoma in situ (CIS) were significant and independent factors affecting the occurrence of metachronous UUT TCC (P = 0.0425, 0.0082, and 0.0006, respectively). These results were supported, to some extent, by analysis of the UUT TCC disease-free rate by the Kaplan-Meier method, whereby patients with prostatic urethral involvement or with associated CIS demonstrated a significantly lower metachronous UUT TCC disease-free rate than patients without prostatic urethral involvement or without associated CIS (log-rank test, P = 0.0116 and 0.0075, respectively). Multiple tumors, prostatic urethral involvement and associated CIS were risk factors for metachronous UUT TCC, a conclusion that may be useful for designing follow-up strategies for primary invasive bladder cancer after radical cystectomy.
Resumo:
Resumen tomado de la publicación
Resumo:
Genetic parameters and breeding values for dairy cow fertility were estimated from 62 443 lactation records. Two-trait analysis of fertility and milk yield was investigated as a method to estimate fertility breeding values when culling or selection based on milk yield in early lactation determines presence or absence of fertility observations in later lactations. Fertility traits were calving interval, intervals from calving to first service, calving to conception and first to last service, conception success to first service and number of services per conception. Milk production traits were 305-day milk, fat and protein yield. For fertility traits, range of estimates of heritability (h(2)) was 0.012 to 0.028 and of permanent environmental variance (c(2)) was 0.016 to 0.032. Genetic correlations (r(g)) among fertility traits were generally high ( > 0.70). Genetic correlations of fertility with milk production traits were unfavourable (range -0.11 to 0.46). Single and two-trait analyses of fertility were compared using the same data set. The estimates of h(2) and c(2) were similar for two types of analyses. However, there were differences between estimated breeding values and rankings for the same trait from single versus multi-trait analyses. The range for rank correlation was 0.69-0.83 for all animals in the pedigree and 0.89-0.96 for sires with more than 25 daughters. As single-trait method is biased due to selection on milk yield, a multi-trait evaluation of fertility with milk yield is recommended. (C) 2002 Elsevier Science B.V. All rights reserved.
Resumo:
Multiple regression analysis is a statistical technique which allows to predict a dependent variable from m ore than one independent variable and also to determine influential independent variables. Using experimental data, in this study the multiple regression analysis is applied to predict the room mean velocity and determine the most influencing parameters on the velocity. More than 120 experiments for four different heat source locations were carried out in a test chamber with a high level wall mounted air supply terminal at air change rates 3-6 ach. The influence of the environmental parameters such as supply air momentum, room heat load, Archimedes number and local temperature ratio, were examined by two methods: a simple regression analysis incorporated into scatter matrix plots and multiple stepwise regression analysis. It is concluded that, when a heat source is located along the jet centre line, the supply momentum mainly influences the room mean velocity regardless of the plume strength. However, when the heat source is located outside the jet region, the local temperature ratio (the inverse of the local heat removal effectiveness) is a major influencing parameter.