910 resultados para multimode interference
Resumo:
A thermo-optic variable optical attenuator (VOA) based on a Mach-Zehnder interferometer and multimode-interference coupler is fabricated. Not a single-mode but a multimode waveguide is used as the input and output structures of the optical field, which greatly reduces the coupling loss of the VOA with a normal single-mode fiber. The insertion loss of the fabricated VOA is 2.52 to 2.82 dB at the wavelength of 1520 to 1570 nm. The polarization dependent loss is 0.28 to 0.45 dB at the same wavelength range. Its maximum attenuation range is up to 26.3 dB when its power consumption is 369 mW. The response frequency of the fabricated VOA is about 10 kHz. (C) 2004 Society of Photo-Optical Instrumentation Engineers.
Resumo:
The internal reflection of the multimode-interference (MMI)-type device is calculated with the bidirectional beam propagation method. The calculated results indicate that the difference of the effective refractive indices between the core region and the surrounding region has a determining effect on the internal reflection of the MMI-type device. The output taper for the MMI-type combiner and splitter has a more evident effect on the internal reflection than the input taper. The internal reflection decreases with increasing the end width of the taper. For the MMI-type device with appropriate tapers, the internal reflection does not show evident degradation with the deviation of the length of the MMI region from its optimal value. (C) 2004 Society of Photo-Optical Instrumentation Engineers.
Resumo:
A cascaded multimode interference 1 x 8 power splitter is proposed and fabricated in silicon-on-insulator material. The device consists of seven 1 x 2 power splitters arranged in a tree configuration. The cascaded splitter and its 1 x 2 splitter element have the power uniformity of approximately 1.5 dB and 0.3 dB, respectively.
Resumo:
A 3-dB multimode interference optical coupler based on rib waveguides with trapezoidal cross section was designed and fabricated on silicon-on-insulator wafer. Potassium hydroxide (KOH) anisotropic chemical etching of silicon was used to fabricate the waveguides to obtain smooth interface. A modified finite-difference beam propagation method was used to simulate the multimode rib waveguide with slope interfaces. The rms roughness of etching interface is as small as 1.49 nm. The propagation loss of the waveguide is 1.3 dB/cm at wavelength of 1.55 mum. The fabricated 3-dB coupler has a good uniformity of 0.2 dB.
Resumo:
Size tolerance of a 4X4 general interference tapered multimode interference (MMI) coupler in a silicon-on-insulator (SOI) structure is investigated by means of a 2-D finite difference beam propagation method (2D-FDBPM), together with an effective refractive index method (EIM). The results show that the tapered multimode interference coupler exhibits relatively larger size tolerance when light is launched from the edgeport than from midport, though it has much better output power uniformity when light is launched from midport. Besides that, it can reduce the device length greatly. The 4X4 general interference tapered MMI coupler has a slightly larger size tolerance compared with a conventional straight multimode interference coupler. (C) 2003 Society of Photo-Optical Instrumentation Engineers.
Resumo:
A thermo-optic variable optical attenuator based on a multimode interference coupler principle is fabricated. The propagation loss of the fabricated device is 1.6 to 3.8 dB at the wavelength range 1510 to 1610 nm, which is very near the calculated value (1.2 dB) by the finite difference beam propagation method. The maximum power consumption is 363 mW and the dynamic attenuation range is 0 to 26 dB. The response frequency of the fabricated attenuator is about 10 kHz. (C) 2003 Society of Photo-Optical Instrumentation Engineers.
Resumo:
A type of thermo-optic variable optical attenuator based on multimode interference coupler is proposed. The optical field propagation properties of the devices are simulated using finite difference beam propagation method. The propagation loss of the fabricated device is 2-4.2 dB at the wavelength range 1510-1610 nm. The total power consumption is 370 mW and the maximum attenuation is more than 25 dB, which almost can meet the requirements of optical fiber communication systems.
Resumo:
We have fabricated a compact 3-dB multimode interference coupler with a large silicon-on-insulator cross section. To reduce the length of the usual symmetric interference multimode interference coupler, we propose using a parabolically tapered structure. The length of the device is 398 mum. The device has a uniformity of 0.28 dB. (C) 2001 Optical Society of America.
Resumo:
Analytical expression of signal bandwidth of general straight and tapered N x N multimode interference (MMI) couplers is presented. The signal bandwidth is characterized as a function of mode relative energy, mode propagation delay time, and mode pulse broadening in the multimode section of MMI coupler. The model is used to evaluate the signal bandwidth of specific couplers. Results indicate that the signal bandwidth decreases seriously with the increase of channel number and channel guide space. Compared with the straight MMI coupler, the tapered MMI coupler has an improved signal bandwidth.
Resumo:
We demonstrate a type of 2 x 2 multimode interference 3 dB coupler based on silicon-on-insulator. The fabrication tolerance was investigated by the effective index method and the guide mode method. The devices with different lengths were fabricated and near-held output images were obtained. Tolerances to width, length and etch depth are 2, 200 and 2 mum, respectively. The devices show a uniform power distribution.
Resumo:
The authors demonstrate a 3dB 2 x 2 parabolically tapered multimode interference (MMT) coupler with a large cross-section and space between the different ports using silicon-on-insulator technology. The device exhibits a uniformity of < 0.8dB and can be used in the realisation of an MMI-based optical switch with a high extinction ratio.
Resumo:
A silicon-on-insulator based channel-shifted multimode interference coupler is designed and fabricated. A two dimensional beam propagation method is used to analyze the dependence of coupler′s performances on the width and length of the multimode waveguide. The device fabricated has a power shift ratio of 73 and an excess loss of about 2.2 dB. An enhancement of fabrication accuracies could further improve the coupler performances.
Resumo:
A novel structure of MMI coupler with different background refractive index has been designed. With stronger optical confinement in multimode waveguides, more guided modes are excited to improve imaging quality. Two-dimensional finite difference beam propagation method (2-D FDBPM) was used to simulate this new structure and had proven that its imaging quality, in terms of power uniformity and excess loss, is much better than conventional structure. This structure can be applied in SOI rib waveguides by deep etching method.
Resumo:
The temperature dependence of characteristics for multimode interference (MMI) based 3-dB coupler in silicon-on-insulator is analyzed, which originates from the relatively high thermo-optic coefficient of silicon. For restricted interference 3-dB MMI coupler, the output power uniformity is ideally 0 at room temperature and becomes 0. 32 dB when temperature rises up to 550 K. For symmetric interference 3-dB MMI coupler, the power uniformity keeps ideally 0 due to its intrinsic symmetric interference mechanism. With the temperature rising, the excess loss of the both devices increases. The performance deterioration due to temperature variety is more obvious to restricted interference MMI 3-dB coupler, comparing with that of symmetric interference MMI 3-dB coupler.