958 resultados para multimedia traffic


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Traffic policing and bandwidth management strategies at the User Network Interface (UNI) of an ATM network are investigated by simulation. The network is assumed to transport real time (RT) traffic like voice and video as well as non-real time (non-RT) data traffic. The proposed policing function, called the super leaky bucket (S-LB), is based on the leaky bucket (LB), but handles the three types of traffic differently according to their quality of service (QoS) requirements. Separate queues are maintained for RT and non-RT traffic. They are normally served alternately, but if the number of RT cells exceeds a threshold, it gets non-pre-emptive priority. Further increase of the RT queue causes low priority cells to be discarded. Non-RT cells are buffered and the sources are throttled back during periods of congestion. The simulations clearly demonstrate the advantages of the proposed strategy in providing improved levels of service (delay, jitter and loss) for all types of traffic.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

We provide a survey of some of our recent results ([9], [13], [4], [6], [7]) on the analytical performance modeling of IEEE 802.11 wireless local area networks (WLANs). We first present extensions of the decoupling approach of Bianchi ([1]) to the saturation analysis of IEEE 802.11e networks with multiple traffic classes. We have found that even when analysing WLANs with unsaturated nodes the following state dependent service model works well: when a certain set of nodes is nonempty, their channel attempt behaviour is obtained from the corresponding fixed point analysis of the saturated system. We will present our experiences in using this approximation to model multimedia traffic over an IEEE 802.11e network using the enhanced DCF channel access (EDCA) mechanism. We have found that we can model TCP controlled file transfers, VoIP packet telephony, and streaming video in the IEEE802.11e setting by this simple approximation.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

The requirement to provide multimedia services with QoS support in mobile networks has led to standardization and deployment of high speed data access technologies such as the High Speed Downlink Packet Access (HSDPA) system. HSDPA improves downlink packet data and multimedia services support in WCDMA-based cellular networks. As is the trend in emerging wireless access technologies, HSDPA supports end-user multi-class sessions comprising parallel flows with diverse Quality of Service (QoS) requirements, such as real-time (RT) voice or video streaming concurrent with non real-time (NRT) data service being transmitted to the same user, with differentiated queuing at the radio link interface. Hence, in this paper we present and evaluate novel radio link buffer management schemes for QoS control of multimedia traffic comprising concurrent RT and NRT flows in the same HSDPA end-user session. The new buffer management schemes—Enhanced Time Space Priority (E-TSP) and Dynamic Time Space Priority (D-TSP)—are designed to improve radio link and network resource utilization as well as optimize end-to-end QoS performance of both RT and NRT flows in the end-user session. Both schemes are based on a Time-Space Priority (TSP) queuing system, which provides joint delay and loss differentiation between the flows by queuing (partially) loss tolerant RT flow packets for higher transmission priority but with restricted access to the buffer space, whilst allowing unlimited access to the buffer space for delay-tolerant NRT flow but with queuing for lower transmission priority. Experiments by means of extensive system-level HSDPA simulations demonstrates that with the proposed TSP-based radio link buffer management schemes, significant end-to-end QoS performance gains accrue to end-user traffic with simultaneous RT and NRT flows, in addition to improved resource utilization in the radio access network.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

This paper investigates a dynamic buffer man-agement scheme for QoS control of multimedia services in be-yond 3G wireless systems. The scheme is studied in the context of the state-of-the-art 3.5G system i.e. the High Speed Downlink Packet Access (HSDPA) which enhances 3G UMTS to support high-speed packet switched services. Unlike earlier systems, UMTS-evolved systems from HSDPA and beyond incorporate mechanisms such as packet scheduling and HARQ in the base station necessitating data buffering at the air interface. This introduces a potential bottleneck to end-to-end communication. Hence, buffer management at the air interface is crucial for end-to-end QoS support of multimedia services with multi-plexed parallel diverse flows such as video and data in the same end-user session. The dynamic buffer management scheme for HSDPA multimedia sessions with aggregated real-time and non real-time flows is investigated via extensive HSDPA simulations. The impact of the scheme on end-to-end traffic performance is evaluated with an example multimedia session comprising a real-time streaming flow concurrent with TCP-based non real-time flow. Results demonstrate that the scheme can guar-antee the end-to-end QoS of the real-time streaming flow, whilst simultaneously protecting the non real-time flow from starva-tion resulting in improved end-to-end throughput performance

Relevância:

70.00% 70.00%

Publicador:

Resumo:

HSDPA specifications include support for a flexible framework for QoS management. In this paper, it is shown how buffer management could be incorporated into HSDPA QoS framework for 'multimedia' traffic QoS control in the MAC-hs of the Node-B. A time-space-priority (TSP) scheme is proposed as viable buffer management scheme to this effect. Comparative simulation study with other schemes is presented, demonstrating the effectiveness of the TSP buffer management scheme for 'multimedia' service QoS control in HSDPA Node-B data buffers

Relevância:

70.00% 70.00%

Publicador:

Resumo:

By 2015, with the proliferation of wireless multimedia applications and services (e.g., mobile TV, video on demand, online video repositories, immersive video interaction, peer to peer video streaming, and interactive video gaming), and any-time anywhere communication, the number of smartphones and tablets will exceed 6.5 billion as the most common web access devices. Data volumes in wireless multimedia data-intensive applications and mobile web services are projected to increase by a factor of 10 every five years, associated with a 20 percent increase in energy consumption, 80 percent of which is multimedia traffic related. In turn, multimedia energy consumption is rising at 16 percent per year, doubling every six years. It is estimated that energy costs alone account for as much as half of the annual operating expenditure. This has prompted concerted efforts by major operators to drastically reduce carbon emissions by up to 50 percent over the next 10 years. Clearly, there is an urgent need for new disruptive paradigms of green media to bridge the gap between wireless technologies and multimedia applications.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

To cope with the rapid growth of multimedia applications that requires dynamic levels of quality of service (QoS), cross-layer (CL) design, where multiple protocol layers are jointly combined, has been considered to provide diverse QoS provisions for mobile multimedia networks. However, there is a lack of a general mathematical framework to model such CL scheme in wireless networks with different types of multimedia classes. In this paper, to overcome this shortcoming, we therefore propose a novel CL design for integrated real-time/non-real-time traffic with strict preemptive priority via a finite-state Markov chain. The main strategy of the CL scheme is to design a Markov model by explicitly including adaptive modulation and coding at the physical layer, queuing at the data link layer, and the bursty nature of multimedia traffic classes at the application layer. Utilizing this Markov model, several important performance metrics in terms of packet loss rate, delay, and throughput are examined. In addition, our proposed framework is exploited in various multimedia applications, for example, the end-to-end real-time video streaming and CL optimization, which require the priority-based QoS adaptation for different applications. More importantly, the CL framework reveals important guidelines as to optimize the network performance

Relevância:

60.00% 60.00%

Publicador:

Resumo:

There is an increasing number of Ambient Intelligence (AmI) systems that are time-sensitive and resource-aware. From healthcare to building and even home/office automation, it is now common to find systems combining interactive and sensing multimedia traffic with relatively simple sensors and actuators (door locks, presence detectors, RFIDs, HVAC, information panels, etc.). Many of these are today known as Cyber-Physical Systems (CPS). Quite frequently, these systems must be capable of (1) prioritizing different traffic flows (process data, alarms, non-critical data, etc.), (2) synchronizing actions in several distributed devices and, to certain degree, (3) easing resource management (e.g., detecting faulty nodes, managing battery levels, handling overloads, etc.). This work presents FTT-MA, a high-level middleware architecture aimed at easing the design, deployment and operation of such AmI systems. FTT-MA ensures that both functional and non-functional aspects of the applications are met even during reconfiguration stages. The paper also proposes a methodology, together with a design tool, to create this kind of systems. Finally, a sample case study is presented that illustrates the use of the middleware and the methodology proposed in the paper.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

This paper investigates a queuing system for QoS optimization of multimedia traffic consisting of aggregated streams with diverse QoS requirements transmitted to a mobile terminal over a common downlink shared channel. The queuing system, proposed for buffer management of aggregated single-user traffic in the base station of High-Speed Downlink Packet Access (HSDPA), allows for optimum loss/delay/jitter performance for end-user multimedia traffic with delay-tolerant non-real-time streams and partially loss tolerant real-time streams. In the queuing system, the real-time stream has non-preemptive priority in service but the number of the packets in the system is restricted by a constant. The non-real-time stream has no service priority but is allowed unlimited access to the system. Both types of packets arrive in the stationary Poisson flow. Service times follow general distribution depending on the packet type. Stability condition for the model is derived. Queue length distribution for both types of customers is calculated at arbitrary epochs and service completion epochs. Loss probability for priority packets is computed. Waiting time distribution in terms of Laplace-Stieltjes transform is obtained for both types of packets. Mean waiting time and jitter are computed. Numerical examples presented demonstrate the effectiveness of the queuing system for QoS optimization of buffered end-user multimedia traffic with aggregated real-time and non-real-time streams.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Basic Network transactions specifies that datagram from source to destination is routed through numerous routers and paths depending on the available free and uncongested paths which results in the transmission route being too long, thus incurring greater delay, jitter, congestion and reduced throughput. One of the major problems of packet switched networks is the cell delay variation or jitter. This cell delay variation is due to the queuing delay depending on the applied loading conditions. The effect of delay, jitter accumulation due to the number of nodes along transmission routes and dropped packets adds further complexity to multimedia traffic because there is no guarantee that each traffic stream will be delivered according to its own jitter constraints therefore there is the need to analyze the effects of jitter. IP routers enable a single path for the transmission of all packets. On the other hand, Multi-Protocol Label Switching (MPLS) allows separation of packet forwarding and routing characteristics to enable packets to use the appropriate routes and also optimize and control the behavior of transmission paths. Thus correcting some of the shortfalls associated with IP routing. Therefore MPLS has been utilized in the analysis for effective transmission through the various networks. This paper analyzes the effect of delay, congestion, interference, jitter and packet loss in the transmission of signals from source to destination. In effect the impact of link failures, repair paths in the various physical topologies namely bus, star, mesh and hybrid topologies are all analyzed based on standard network conditions.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Esta tese apresenta uma metodologia para avaliação de desempenho de redes de acesso banda larga. A avaliação de desempenho de redes é uma forma de identificar e analisar como determinadas características tais como diferentes tipos de tráfego ou formas de utilização, por exemplo, podem influenciar no comportamento da rede em foco, podendo assim prever como tal rede se comportará frente a situações futuras. A metodologia apresentada é composta de duas abordagens: uma abordagem baseada em medições e outra baseada em modelagem via processos Markovianos. As redes analisadas englobam os dois tipos básicos de arquitetura de acesso: redes ADSL2+ (linha digital do assinante assimétrica 2+ – Asymmetric Digital Subscriber Line 2+), as quais são redes cabeadas que utilizam cabos metálicos de pares trançados; redes FBWN (rede sem fio banda larga fixa – Fixed Broadband Wireless Network), as quais são redes sem fio (wireless) baseadas no padrão IEEE 802.16. A abordagem de medições é focada na forma como a rede analisada se comporta frente a três situações: transmissão de um tráfego genérico; impacto de ruídos não-estacionários no sistema; e uso da rede como meio de transmissão de tráfego multimídia em tempo real. A abordagem de modelagem, por sua vez, ´e baseada em prever o comportamento das redes analisadas utilizando uma formulação matemática fundamentada em processos Markovianos. Os resultados apresentados indicam a viabilidade de aplicação desta metodologia como forma de avaliação de desempenho. Os resultados ainda tornam possível a extensão desta metodologia a outros tipos de redes de acesso banda larga, tais como: redes de fibras ópticas, redes de enlaces de microondas, redes VDSL/VDSL2 (linha digital do assinante de alta taxa de dados – Very-high-data-rate DSL), etc.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Our society uses a large diversity of co-existing wired and wireless networks in order to satisfy its communication needs. A cooper- ation between these networks can benefit performance, service availabil- ity and deployment ease, and leads to the emergence of hybrid networks. This position paper focuses on a hybrid mobile-sensor network identify- ing potential advantages and challenges of its use and defining feasible applications. The main value of the paper, however, is in the proposed analysis approach to evaluate the performance at the mobile network side given the mixed mobile-sensor traffic. The approach combines packet- level analysis with modelling of flow-level behaviour and can be applied for the study of various application scenarios. In this paper we consider two applications with distinct traffic models namely multimedia traffic and best-effort traffic.