962 resultados para multielectrode arrays


Relevância:

70.00% 70.00%

Publicador:

Resumo:

The human brain stores, integrates, and transmits information recurring to millions of neurons, interconnected by countless synapses. Though neurons communicate through chemical signaling, information is coded and conducted in the form of electrical signals. Neuroelectrophysiology focus on the study of this type of signaling. Both intra and extracellular approaches are used in research, but none holds as much potential in high-throughput screening and drug discovery, as extracellular recordings using multielectrode arrays (MEAs). MEAs measure neuronal activity, both in vitro and in vivo. Their key advantage is the capability to record electrical activity at multiple sites simultaneously. Alzheimer’s disease (AD) is the most common neurodegenerative disease and one of the leading causes of death worldwide. It is characterized by neurofibrillar tangles and aggregates of amyloid-β (Aβ) peptides, which lead to the loss of synapses and ultimately neuronal death. Currently, there is no cure and the drugs available can only delay its progression. In vitro MEA assays enable rapid screening of neuroprotective and neuroharming compounds. Therefore, MEA recordings are of great use in both AD basic and clinical research. The main aim of this thesis was to optimize the formation of SH-SY5Y neuronal networks on MEAs. These can be extremely useful for facilities that do not have access to primary neuronal cultures, but can also save resources and facilitate obtaining faster high-throughput results to those that do. Adhesion-mediating compounds proved to impact cell morphology, viability and exhibition of spontaneous electrical activity. Moreover, SH-SY5Y cells were successfully differentiated and demonstrated acute effects on neuronal function after Aβ addition. This effect on electrical signaling was dependent on Aβ oligomers concentration. The results here presented allow us to conclude that the SH-SY5Y cell line can be successfully differentiated in properly coated MEAs and be used for assessing acute Aβ effects on neuronal signaling.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Characterizing the functional connectivity between neurons is key for understanding brain function. We recorded spikes and local field potentials (LFPs) from multielectrode arrays implanted in monkey visual cortex to test the hypotheses that spikes generated outward-traveling LFP waves and the strength of functional connectivity depended on stimulus contrast, as described recently. These hypotheses were proposed based on the observation that the latency of the peak negativity of the spike-triggered LFP average (STA) increased with distance between the spike and LFP electrodes, and the magnitude of the STA negativity and the distance over which it was observed decreased with increasing stimulus contrast. Detailed analysis of the shape of the STA, however, revealed contributions from two distinct sources-a transient negativity in the LFP locked to the spike (similar to 0 ms) that attenuated rapidly with distance, and a low-frequency rhythm with peak negativity similar to 25 ms after the spike that attenuated slowly with distance. The overall negative peak of the LFP, which combined both these components, shifted from similar to 0 to similar to 25 ms going from electrodes near the spike to electrodes far from the spike, giving an impression of a traveling wave, although the shift was fully explained by changing contributions from the two fixed components. The low-frequency rhythm was attenuated during stimulus presentations, decreasing the overall magnitude of the STA. These results highlight the importance of accounting for the network activity while using STAs to determine functional connectivity.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

The increasing use of patterned neural networks in multielectrode arrays and similar devices drives the constant development and evaluation of new biomaterials. Recently, we presented a promising technique to guide neurons and glia reliably and effectively. Parylene-C, a common hydrophobic polymer, was photolithographically patterned on silicon oxide (SiO(2)) and subsequently activated via immersion in serum. In this article, we explore the effects of ultraviolet (UV)-induced oxidation on parylene's ability to pattern neurons and glia. We exposed parylene-C stripe patterns to increasing levels of UV radiation and found a dose-dependent reduction in the total mass of patterned cells, as well as a gradual loss of glial and neuronal conformity to the patterns. In contrast, nonirradiated patterns had superior patterning results and increased presence of cells. The reduced cell adhesion and patterning after the formation of aldehyde and carboxyl groups on UV-radiated parylene-C supports our hypothesis that cell adhesion and growth on parylene is facilitated by hydrophobic adsorption of serum proteins. We conclude that unlike other cell patterning schemes, our technique does not rely on photooxidation of the polymer. Nonetheless, the precise control of oxygenated groups on parylene could pave the way for the differential binding of proteins and other molecules on the surface, aiding in the adhesion of alternative cell types. (c) 2010 Wiley Periodicals, Inc. J Biomed Mater Res, 2010.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

BACKGROUND: Scale-invariant neuronal avalanches have been observed in cell cultures and slices as well as anesthetized and awake brains, suggesting that the brain operates near criticality, i.e. within a narrow margin between avalanche propagation and extinction. In theory, criticality provides many desirable features for the behaving brain, optimizing computational capabilities, information transmission, sensitivity to sensory stimuli and size of memory repertoires. However, a thorough characterization of neuronal avalanches in freely-behaving (FB) animals is still missing, thus raising doubts about their relevance for brain function. METHODOLOGY/PRINCIPAL FINDINGS: To address this issue, we employed chronically implanted multielectrode arrays (MEA) to record avalanches of action potentials (spikes) from the cerebral cortex and hippocampus of 14 rats, as they spontaneously traversed the wake-sleep cycle, explored novel objects or were subjected to anesthesia (AN). We then modeled spike avalanches to evaluate the impact of sparse MEA sampling on their statistics. We found that the size distribution of spike avalanches are well fit by lognormal distributions in FB animals, and by truncated power laws in the AN group. FB data surrogation markedly decreases the tail of the distribution, i.e. spike shuffling destroys the largest avalanches. The FB data are also characterized by multiple key features compatible with criticality in the temporal domain, such as 1/f spectra and long-term correlations as measured by detrended fluctuation analysis. These signatures are very stable across waking, slow-wave sleep and rapid-eye-movement sleep, but collapse during anesthesia. Likewise, waiting time distributions obey a single scaling function during all natural behavioral states, but not during anesthesia. Results are equivalent for neuronal ensembles recorded from visual and tactile areas of the cerebral cortex, as well as the hippocampus. CONCLUSIONS/SIGNIFICANCE: Altogether, the data provide a comprehensive link between behavior and brain criticality, revealing a unique scale-invariant regime of spike avalanches across all major behaviors.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Cultures of cortical neurons grown on multielectrode arrays exhibit spontaneous, robust and recurrent patterns of highly synchronous activity called bursts. These bursts play a crucial role in the development and topological selforganization of neuronal networks. Thus, understanding the evolution of synchrony within these bursts could give insight into network growth and the functional processes involved in learning and memory. Functional connectivity networks can be constructed by observing patterns of synchrony that evolve during bursts. To capture this evolution, a modelling approach is adopted using a framework of emergent evolving complex networks and, through taking advantage of the multiple time scales of the system, aims to show the importance of sequential and ordered synchronization in network function.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

The increasing use of patterned neural networks in multielectrode arrays and similar devices drives the constant development and evaluation of new biomaterials. Recently, we presented a promising technique to guide neurons and glia reliably and effectively. Parylene-C, a common hydrophobic polymer, was photolithographically patterned on silicon oxide (SiO2) and subsequently activated via immersion in serum. In this article, we explore the effects of ultraviolet (UV)-induced oxidation on parylene's ability to pattern neurons and glia. We exposed parylene-C stripe patterns to increasing levels of UV radiation and found a dose-dependent reduction in the total mass of patterned cells, as well as a gradual loss of glial and neuronal conformity to the patterns. In contrast, nonirradiated patterns had superior patterning results and increased presence of cells. The reduced cell adhesion and patterning after the formation of aldehyde and carboxyl groups on UV-radiated parylene-C supports our hypothesis that cell adhesion and growth on parylene is facilitated by hydrophobic adsorption of serum proteins. We conclude that unlike other cell patterning schemes, our technique does not rely on photooxidation of the polymer. Nonetheless, the precise control of oxygenated groups on parylene could pave the way for the differential binding of proteins and other molecules on the surface, aiding in the adhesion of alternative cell types. © 2010 Wiley Periodicals, Inc. J Biomed Mater Res, 2010

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Epilepsy is the most common neurological disorder, with over 50 million people worldwide affected. Recent evidence suggests that the transient receptor potential cation channel subfamily V member 1 (TRPV1) may contribute to the onset and progression of some forms of epilepsy. Since the two nonpsychotropic cannabinoids cannabidivarin (CBDV) and cannabidiol (CBD) exert anticonvulsant activity in vivo and produce TRPV1-mediated intracellular calcium elevation in vitro, we evaluated the effects of these two compounds on TRPV1 channel activation and desensitization and in an in vitro model of epileptiform activity. Patch clamp analysis in transfected HEK293 cells demonstrated that CBD and CBDV dose-dependently activate and rapidly desensitize TRPV1, as well as TRP channels of subfamily V type 2 (TRPV2) and subfamily A type 1 (TRPA1). TRPV1 and TRPV2 transcripts were shown to be expressed in rat hippocampal tissue. When tested on epileptiform neuronal spike activity in hippocampal brain slices exposed to a Mg2+-free solution using multielectrode arrays (MEAs), CBDV reduced both epileptiform burst amplitude and duration. The prototypical TRPV1 agonist, capsaicin, produced similar, although not identical effects. Capsaicin, but not CBDV, effects on burst amplitude were reversed by IRTX, a selective TRPV1 antagonist. These data suggest that CBDV antiepileptiform effects in the Mg2+-free model are not uniquely mediated via activation of TRPV1. However, TRPV1 was strongly phosphorylated (and hence likely sensitized) in Mg2+-free solution-treated hippocampal tissue, and both capsaicin and CBDV caused TRPV1 dephosphorylation, consistent with TRPV1 desensitization. We propose that CBDV effects on TRP channels should be studied further in different in vitro and in vivo models of epilepsy.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Monolayers of neurons and glia have been employed for decades as tools for the study of cellular physiology and as the basis for a variety of standard toxicological assays. A variety of three dimensional (3D) culture techniques have been developed with the aim to produce cultures that recapitulate desirable features of intact. In this study, we investigated the effect of preparing primary mouse mixed neuron and glial cultures in the inert 3D scaffold, Alvetex. Using planar multielectrode arrays, we compared the spontaneous bioelectrical activity exhibited by neuroglial networks grown in the scaffold with that seen in the same cells prepared as conventional monolayer cultures. Two dimensional (monolayer; 2D) cultures exhibited a significantly higher spike firing rate than that seen in 3D cultures although no difference was seen in total signal power (<50 Hz) while pharmacological responsiveness of each culture type to antagonism of GABAAR, NMDAR and AMPAR was highly comparable. Interestingly, correlation of burst events, spike firing and total signal power (<50 Hz) revealed that local field potential events were associated with action potential driven bursts as was the case for 2D cultures. Moreover, glial morphology was more physiologically normal in 3D cultures. These results show that 3D culture in inert scaffolds represents a more physiologically normal preparation which has advantages for physiological, pharmacological, toxicological and drug development studies, particularly given the extensive use of such preparations in high throughput and high content systems.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Brain oscillation are not completely independent, but able to interact with each other through cross-frequency coupling (CFC) in at least four different ways: power-to-power, phase-to-phase, phase-to-frequency and phase-to-power. Recent evidence suggests that not only the rhythms per se, but also their interactions are involved in the execution of cognitive tasks, mainly those requiring selective attention, information flow and memory consolidation. It was recently proposed that fast gamma oscillations (60 150 Hz) convey spatial information from the medial entorhinal cortex to the CA1 region of the hippocampus by means of theta (4-12 Hz) phase coupling. Despite these findings, however, little is known about general characteristics of CFCs in several brain regions. In this work we recorded local field potentials using multielectrode arrays aimed at the CA1 region of the dorsal hippocampus for chronic recording. Cross-frequency coupling was evaluated by using comodulogram analysis, a CFC tool recently developted (Tort et al. 2008, Tort et al. 2010). All data analyses were performed using MATLAB (MathWorks Inc). Here we describe two functionally distinct oscillations within the fast gamma frequency range, both coupled to the theta rhythm during active exploration and REM sleep: an oscillation with peak activity at ~80 Hz, and a faster oscillation centered at ~140 Hz. The two oscillations are differentially modulated by the phase of theta depending on the CA1 layer; theta-80 Hz coupling is strongest at stratum lacunosum-moleculare, while theta-140 Hz coupling is strongest at stratum oriens-alveus. This laminar profile suggests that the ~80 Hz oscillation originates from entorhinal cortex inputs to deeper CA1 layers, while the ~140 Hz oscillation reflects CA1 activity in superficial layers. We further show that the ~140 Hz oscillation differs from sharp-wave associated ripple oscillations in several key characteristics. Our results demonstrate the existence of novel theta-associated high-frequency oscillations, and suggest a redefinition of fast gamma oscillations

Relevância:

60.00% 60.00%

Publicador:

Resumo:

The ability to predict future rewards or threats is crucial for survival. Recent studies have addressed future event prediction by the hippocampus. Hippocampal neurons exhibit robust selectivity for spatial location. Thus, the activity of hippocampal neurons represents a cognitive map of space during navigation as well as during planning and recall. Spatial selectivity allows the hippocampus to be involved in the formation of spatial and episodic memories, including the sequential ordering of events. On the other hand, the discovery of reverberatory activity in multiple forebrain areas during slow wave and REM sleep underscored the role of sleep on the consolidation of recently acquired memory traces. To this date, there are no studies addressing whether neuronal activity in the hippocampus during sleep can predict regular environmental shifts. The aim of the present study was to investigate the activity of neuronal populations in the hippocampus during sleep sessions intercalated by spatial exploration periods, in which the location of reward changed in a predictable way. To this end, we performed the chronic implantation of 32-channel multielectrode arrays in the CA1 regions of the hippocampus in three male rats of the Wistar strain. In order to activate different neuronal subgroups at each cycle of the task, we exposed the animals to four spatial exploration sessions in a 4-arm elevated maze in which reward was delivered in a single arm per session. Reward location changed regularly at every session in a clockwise manner, traversing all the arms at the end of the daily recordings. Animals were recorded from 2-12 consecutive days. During spatial exploration of the 4-arm elevated maze, 67,5% of the recorded neurons showed firing rate differences across the maze arms. Furthermore, an average of 42% of the neurons showed increased correlation (R>0.3) between neuronal pairs in each arm. This allowed us to sort representative neuronal subgroups for each maze arm, and to analyze the activity of these subgroups across sleep sessions. We found that neuronal subgroups sorted by firing rate differences during spatial exploration sustained these differences across sleep sessions. This was not the case with neuronal subgroups sorted according to synchrony (correlation). In addition, the correlation levels between sleep sessions and waking patterns sampled in each arm were larger for the entire population of neurons than for the rate or synchrony subgroups. Neuronal activity during sleep of the entire neuronal population or subgroups did not show different correlations among the four arm mazes. On the other hand, we verified that neuronal activity during pre-exploration sleep sessions was significantly more similar to the activity patterns of the target arm than neuronal activity during pre-exploration sleep sessions. In other words, neuronal activity during sleep that precedes the task reflects more strongly the location of reward than neuronal activity during sleep that follows the task. Our results suggest that neuronal activity during sleep can predict regular environmental changes

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Early network oscillations and spindle bursts are typical patterns of spontaneous rhythmic activity in cortical networks of neonatal rodents in vivo and in vitro. The latter can also be triggered in vivo by stimulation of afferent inputs. The mechanisms underlying such oscillations undergo profound developmental changes in the first postnatal weeks. Their possible role in cortical development is postulated but not known in detail. We have studied spontaneous and evoked patterns of activity in organotypic cultures of slices from neonatal rat cortex grown on multielectrode arrays (MEAs) for extracellular single- and multi-unit recording. Episodes of spontaneous spike discharge oscillations at 7 - 25 Hz lasting for 0.6 - 3 seconds appeared in about half of these cultures spontaneously and could be triggered by electrical stimulation of few distinct electrodes. These oscillations usually covered only restricted areas of the slices. Besides oscillations, single population bursts that spread in a wavelike manner over the whole slice also appeared spontaneously and were triggered by electrical stimulation. In most but not all cultures, population bursts preceded the oscillations. Both population bursts and spike discharge oscillations required intact glutamatergic synaptic transmission since they were suppressed by the AMPA/kainate glutamate receptor antagonist CNQX. The NMDA antagonist d-APV suppressed the oscillations but not the population bursts, suggesting an involvement of NMDA receptors in the oscillations. These findings show that spindle burst like cortical rhythms are reproduced in organotypic cultures of neonatal cortex. The culture model thus allows investigating the role of such rhythms in cortical circuit formation. Supported by SNF grant No. 3100A0-107641/1.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

The generation of rhythmic electrical activity is a prominent feature of spinal cord circuits that is used for locomotion and also for circuit refinement during development. The mechanisms involved in rhythm generation in spinal cord networks are not fully understood. It is for example not known whether spinal cord rhythms are driven by pacemaker neurons and if yes, which neurons are involved in this function. We studied the mechanisms involved in rhythm generation in slice cultures from fetal rats that were grown on multielectrode arrays (MEAs). We combined multisite extracellular recordings from the MEA electrodes with intracellular patch clamp recordings from single neurons. We found that spatially restricted oscillations of activity appeared in most of the cultures spontaneously. Such activity was based on intrinsic activity in a percentage of the neurons that could activate the spinal networks through recurrent excitation. The local oscillator networks critically involved NMDA, AMPA and GABA / glycine receptors at subsequent phases of the oscillation cycle. Intrinsic spiking in individual neurons (in the absence of functional synaptic coupling) was based on persistent sodium currents. Intrinsic firing as well as persistent sodium currents were increased by 5-HT through 5-HT2 receptors. Comparing neuronal activity to muscle activity in co-cultures of spinal cord slices with muscle fibers we found that a percentage of the intrinsically spiking neurons were motoneurons. These motoneurons were electrically coupled among each other and they could drive the spinal networks through cholinergic recurrent excitation. These findings open the possibility that during development rhythmic activity in motoneurons is not only involved in circuit refinement downstream at the neuromuscular endplates but also upstream at the level of spinal cord circuits.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The modification of peripherally metalated meso-η1-platiniometalloporphyrins, such as trans-[PtBr(NiDAPP)(PPh3)2] (H2DAPP = 5-phenyl-10,20-bis(3‘,5‘-di-tert-butylphenyl)porphyrin), leads to the analogous platinum(II) nitrato and triflato electrophiles in almost quantitative yields. Self-assembly reactions of these meso-platinioporphyrin tectons with pyridine, 4,4‘-bipyridine, or various meso-4-pyridylporphyrins in chloroform generate new multicomponent organometallic porphyrin arrays containing up to five porphyrin units. These new types of supramolecular arrays are formed exclusively in high yields and are stable in solution or in the solid state for extended periods. They were characterized by multinuclear NMR and UV−visible spectroscopy as well as high-resolution electrospray ionization mass spectrometry.