944 resultados para multi-purpose
Resumo:
better health service.Conclusion:This research provides an insight into the perceptions of the rhetoric and reality of community member involvement in the process of developing multi-purpose services. It revealed a grounded theory in which fear and trust were intrinsic to a process of changing from a traditional hospital service to the acceptance of a new model of health care provided at a multi-purpose service.
Collaboration : developing integration in multi-purpose services in rural New South Wales, Australia
Resumo:
Introduction: The Multi-purpose Service (MPS) Program was introduced to rural Australia in 1991 as a solution to poor health outcomes in rural compared with metropolitan populations, difficulty in attracting healthcare staff and a lack of viability and range of health services in rural areas. The aim of this study was to describe the main concerns of participants involved in the development of multi-purpose services in rural New South Wales (NSW). This article is abstracted from a larger study and discusses the extent to which collaboration occurred within the new multi-purpose service. Methods: A constructivist grounded theory methodology was used. Participants were from 13 multi-purpose services in rural NSW and 30 in-depth interviews were conducted with 6 community members, 11 managers and 13 staff members who had been involved in the process of developing a multi-purpose service. Results: The main concern of all participants was their anticipation of risk. This anticipation of risk manifested itself in either trust or suspicion and explained their progression through a phase of collaborating. Participants who had trust in other stakeholders were more likely to embrace an integrated health service identity. Those participants, who were suspicious that they would lose status or power, maintained that the previous hospital services provided a better health service and described a coexistence of services within the multi-purpose service. Conclusions: This study provided an insight into the perceptions of community members, staff members and managers involved in the process of developing a multi-purpose service. It revealed that the anticipation of risk was intrinsic to a process of changing from a traditional hospital service to collaborating in a new model of health care provided at a multi-purpose service.
Resumo:
The structures of the compounds from the reaction of the drug dapsone [4-(4-aminophenylsulfonyl)aniline] with 3,5-dinitrosalicylic acid, the salt hydrate [4-(4-aminohenylsulfonyl)anilinium 2-carboxy-4,6-dinitrophenolate monohydrate] (1) and the 1:1 adduct with 5-nitroisophthalic acid [4-(4-aminophenylsulfonyl)aniline 5-nitrobenzene-1,3-dicarboxylic acid] (2) have been determined. Crystals of 1 are triclinic, space group P-1, with unit cell dimensions a = 8.2043(3), b = 11.4000(6), c = 11.8261(6)Å, α = 110.891(5), β = 91.927(3), γ = 98.590(4)deg. and Z = 4. Compound 2 is orthorhombic, space group Pbcn, with unit cell dimensions a = 20.2662(6), b = 12.7161(4), c = 15.9423(5)Å and Z = 8. In 1, intermolecular analinium N-H…O and water O-H…O and O-H…N hydrogen-bonding interactions with sulfone, carboxyl, phenolate and nitro O-atom and aniline N-atom acceptors give a two-dimensional layered structure. With 2, the intermolecular interactions involve both aniline N-H…O and carboxylic acid O-H…O and O-H…N hydrogen bonds to sulfone, carboxyl, nitro and aniline acceptors, giving a three-dimensional network structure. In both structures π--π aromatic ring associations are present.
Resumo:
The general procedure for synthesizing the rack and pinion mechanism up to seven precision conditions is developed. To illustrate the method, the mechanism has been synthesized in closed form for three precision conditions of path generation, two positions of function generation, and a velocity condition at one of the precision points. This mechanism has a number of advantages over conventional four bar mechanisms. First, since the rack is always tangent to the pinion, the transmission angle is always 90 deg minus the pressure angle of the rack. Second, with both translation and rotation of the rack occurring, multiple outputs are available. Other advantages include the generation of monotonic functions for a wide variety of motion and nonmonotonic functions for a full range of motion as well as nonlinear amplified motions. In this work the mechanism is made to satisfy a number of practical design requirements such as completely rotatable input crank and others. By including the velocity specification, the designer has considerably more control of the output motion. The method of solution developed in this work uses the complex number method of mechanism synthesis. A numerical example is included.
Resumo:
In the near future, the oceans will be subjected to a massive development of marine infrastructures, including offshore wind, tidal and wave energy farms and constructions for marine aquaculture. The development of these facilities will unavoidably exert environmental pressures on marine ecosystems. It is therefore crucial that the economic costs, the use of marine space and the environmental impacts of these activities remain within acceptable limits. Moreover, the installation of arrays of wave energy devices is still far from being economically feasible due to many combined aspects, such as immature technologies for energy conversion, local energy storage and moorings. Therefore, multi-purpose solutions combining renewable energy from the sea (wind, wave, tide), aquaculture and transportation facilities can be considered as a challenging, yet advantageous, way to boost blue growth. This would be due to the sharing of the costs of installation and using the produced energy locally to feed the different functionalities and optimizing marine spatial planning. This paper focuses on the synergies that may be produced by a multi-purpose offshore installation in a relatively calm sea, i.e., the Northern Adriatic Sea, Italy, and specifically offshore Venice. It analyzes the combination of aquaculture, energy production from wind and waves, and energy storage or transfer. Alternative solutions are evaluated based on specific criteria, including the maturity of the technology, the environmental impact, the induced risks and the costs. Based on expert judgment, the alternatives are ranked and a preliminary layout of the selected multi-purpose installation for the case study is proposed, to further allow the exploitation of the synergies among different functionalities.
Resumo:
There is growing interest in the application of electrode-based measurements for monitoring microbial processes in the Earth using biogeophysical methods. In this study, reactive electrode measurements were combined to electrical geophysical measurements during microbial sulfate reduction occurring in a column of silica beads saturated with natural river water. Electrodic potential (EP), self potential (SP) and complex conductivity signals were recorded using a dual electrode design (Ag/AgCl metal as sensing/EP electrode, Ag/AgCl metal in KCl gel as reference/SP electrode). Open-circuit potentials, representing the tendency for electrochemical reactions to occur on the electrode surfaces, were recorded between sensing/EP electrode and reference/SP electrode and showed significant spatiotemporal variability associated with microbial activity. The dual electrode design isolates the microbial driven sulfide reactions to the sensing electrode and permits removal of any SP signal from the EP measurement. Based on the known sensitivity of a Ag electrode to dissolved sulfide, we interpret EP signals exceeding 550 mV recorded in this experiment in terms of bisulfide (HS-) concentration near multiple sensing electrodes. Complex conductivity measurements capture an imaginary conductivity (s?) signal interpreted as the response of microbial growth and biomass formation in the column. Our results suggest that the implementation of multipurpose electrodes, combining reactive measurements with electrical geophysical measurements, could improve efforts to monitor microbial processes in the Earth using electrodes.
Resumo:
This work was focused on a multi-purpose estuarine environment (river Sado estuary, SW Portugal) around which a number of activities (e.g., fishing, farming, heavy industry, tourism and recreational activities) coexist with urban centres with a total of about 200 000 inhabitants. Based on previous knowledge of the hazardous chemicals within the ecosystem and their potential toxicity to benthic species, this project intended to evaluate the impact of estuarine contaminants on the human and ecosystem health. An integrative methodology based on epidemiological, analytical and biological data and comprising several lines of evidence, namely, human contamination pathways, human health effects, consumption of local produce, estuarine sediments, wells and soils contamination, effects on commercial benthic organisms, and genotoxic potential of sediments, was used. The epidemiological survey confirmed the occurrence of direct and indirect (through food chain) exposure of the local population to estuarine contaminants. Furthermore, the complex mixture of contaminants (e.g., metals, pesticides, polycyclic aromatic hydrocarbons) trapped in the estuary sediments was toxic to human liver cells exposed in vitro, causing cell death, oxidative stress and genotoxic effects that might constitute a risk factor for the development of chronic-degenerative diseases, on the long term. Finally, the integration of data from several endpoints indicated that the estuary is moderately impacted by toxicants that affect also the aquatic biota. Nevertheless, the human health risk can only be correctly assessed through a biomonitoring study including the quantification of contaminants (or metabolites) in biological fluids as well as biomarkers of early biological effects (e.g., biochemical, genetic and omics-based endpoints) and genetic susceptibility in the target population. Data should be supported by a detailed survey to assess the impact of the contaminated seafood and local farm products consumption on human health and, particularly, on metabolic diseases or cancer development.