939 resultados para multi-proxy lake sediment study


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Kumphawapi, which is Thailand’s largest natural freshwater lake, contains a >10,000-year-long climatic and environmental archive. New data sets (stratigraphy, chronology, hydrogen isotopes, plant macrofossil and charcoal records) for two sedimentary sequences are here combined with earlier multi-proxy studies to provide a comprehensive reconstruction of past climatic and environmental changes for Northeast Thailand. Gradually higher moisture availability due to a strengthening of the summer monsoon led to the formation of a large shallow lake in the Kumphawapi basin between >10,700 and c. 7000 cal. BP. The marked increase in moisture availability and lower evaporation between c. 7000 and 6400 cal. BP favoured the growth and expansion of vegetation in and around the shallow lake. The increase in biomass led to gradual overgrowing and infilling, to an apparent lake level lowering and to the development of a wetland. Multiple hiatuses are apparent in all investigated sequences between c. 6500 and 1400 cal. BP and are explained by periodic desiccation events of the wetland and erosion due to the subsequent lake level rise. The rise in lake level, which started c. 2000 cal. BP and reached shallower parts c. 1400 cal. BP, is attributed to an increase in effective moisture availability. The timing of hydroclimatic conditions during the past 2000 years cannot be resolved because of chronological limitations.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

In Finland one of the most important current issues in the environmental management is the quality of surface waters. The increasing social importance of lakes and water systems has generated wide-ranging interest in lake restoration and management, concerning especially lakes suffering from eutrophication, but also from other environmental impacts. Most of the factors deteriorating the water quality in Finnish lakes are connected to human activities. Especially since the 1940's, the intensified farming practices and conduction of sewage waters from scattered settlements, cottages and industry have affected the lakes, which simultaneously have developed in to recreational areas for a growing number of people. Therefore, this study was focused on small lakes, which are human impacted, located close to settlement areas and have a significant value for local population. The aim of this thesis was to obtain information from lake sediment records for on-going lake restoration activities and to prove that a well planned, properly focused lake sediment study is an essential part of the work related to evaluation, target consideration and restoration of Finnish lakes. Altogether 11 lakes were studied. The study of Lake Kaljasjärvi was related to the gradual eutrophication of the lake. In lakes Ormajärvi, Suolijärvi, Lehee, Pyhäjärvi and Iso-Roine the main focus was on sediment mapping, as well as on the long term changes of the sedimentation, which were compared to Lake Pääjärvi. In Lake Hormajärvi the role of different kind of sedimentation environments in the eutrophication development of the lake's two basins were compared. Lake Orijärvi has not been eutrophied, but the ore exploitation and related acid main drainage from the catchment area have influenced the lake drastically and the changes caused by metal load were investigated. The twin lakes Etujärvi and Takajärvi are slightly eutrophied, but also suffer problems associated with the erosion of the substantial peat accumulations covering the fringe areas of the lakes. These peat accumulations are related to Holocene water level changes, which were investigated. The methods used were chosen case-specifically for each lake. In general, acoustic soundings of the lakes, detailed description of the nature of the sediment and determinations of the physical properties of the sediment, such as water content, loss on ignition and magnetic susceptibility were used, as was grain size analysis. A wide set of chemical analyses was also used. Diatom and chrysophycean cyst analyses were applied, and the diatom inferred total phosphorus content was reconstructed. The results of these studies prove, that the ideal lake sediment study, as a part of a lake management project, should be two-phased. In the first phase, thoroughgoing mapping of sedimentation patterns should be carried out by soundings and adequate corings. The actual sampling, based on the preliminary results, must include at least one long core from the main sedimentation basin for the determining the natural background state of the lake. The recent, artificially impacted development of the lake can then be determined by short-core and surface sediment studies. The sampling must be focused on the basis of the sediment mapping again, and it should represent all different sedimentation environments and bottom dynamic zones, considering the inlets and outlets, as well as the effects of possible point loaders of the lake. In practice, the budget of the lake management projects of is usually limited and only the most essential work and analyses can be carried out. The set of chemical and biological analyses and dating methods must therefore been thoroughly considered and adapted to the specific management problem. The results show also, that information obtained from a properly performed sediment study enhances the planning of the restoration, makes possible to define the target of the remediation activities and improves the cost-efficiency of the project.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

A sediment record from a small lake in the north-eastern part of the Kamchatka Peninsula has been investigated in a multi-proxy study to gain knowledge of Holocene climatic and environmental change. Pollen, diatoms, chironomids and selected geochemical parameters were analysed and the sediment record was dated with radiocarbon. The study shows Holocene changes in the terrestrial vegetation as well as responses of the lake ecosystem to catchment maturity and multiple stressors, such as climate change and volcanic eruptions. Climate change is the major driving force resulting in the recorded environmental changes in the lake, although recurrent tephra deposition events also contributed. The sediment record has an age at the base of about 10,000 cal yrs BP, and during the first 400 years the climate was cold and the lake exhibited extensive ice-cover during winter and relatively low primary production. Soils in the catchment were poor with shrub alder and birches dominating the vegetation surrounding the lake. At about 9600–8900 cal yrs BP the climate was cold and moist, and strong seasonal wind stress resulted in reduced ice-cover and increased primary production. After ca. 8900 cal yrs BP the forest density increased around the lake, runoff decreased in a generally drier climate resulting in decreased primary production in the lake until ca. 7000 cal yrs BP. This generally dry climate was interrupted by a brief climatic perturbation, possibly attributed to the 8.2 ka event, indicating increasingly windy conditions with thick snow cover, reduced ice-cover and slightly elevated primary production in the lake. The diatom record shows maximum thermal stratification at ca. 6300–5800 cal yrs BP and indicates together with the geochemical proxies a dry and slightly warmer climate resulting in a high productive lake. The most remarkably change in the catchment vegetation occurred at ca. 4200 cal yrs BP in the form of a conspicuous increase in Siberian dwarf pine (Pinus pumila), indicating a shift to a cooler climate with a thicker and more long-lasting snow cover. This vegetational change was accompanied by marked shifts in the diatom and chironomid stratigraphies, which are also indicative of colder climate and more extensive ice-cover.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Within the scope of Russian-German palaeoenvironmental research, Two-Yurts Lake (TYL, Dvuh-Yurtochnoe in Russian) was chosen as the main scientific target area to decipher Holocene climate variability on Kamchatka. The 5x2 km large and 26 m deep lake is of proglacial origin and situated on the eastern flank of Sredinny Ridge at the northwestern end of the Central Kamchatka Valley, outside the direct influence of active volcanism. Here, we present results of a multi-proxy study on sediment cores, spanning about the last 7000 years. The general tenor of the TYL record is an increase in continentality and winter snow cover in conjunction with a decrease in temperature, humidity, and biological productivity after 5000-4500 cal yrs BP, inferred from pollen and diatom data and the isotopic composition of organic carbon. The TYL proxy data also show that the late Holocene was punctuated by two colder spells, roughly between 4500 and 3500 cal yrs BP and between 1000 and 200 cal yrs BP, as local expressions of the Neoglacial and Little Ice Age, respectively. These environmental changes can be regarded as direct and indirect responses to climate change, as also demonstrated by other records in the regional terrestrial and marine realm. Long-term climate deterioration was driven by decreasing insolation, while the short-term climate excursions are best explained by local climatic processes. The latter affect the configuration of atmospheric pressure systems that control the sources as well as the temperature and moisture of air masses reaching Kamchatka.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

We conducted multi-proxy geochemical analyses (including measurements of organic carbon, nitrogen and sulphur stable isotope composition, and carbonate carbon and oxygen isotope composition) on a 13.5 m sediment core from Lake Bliden, Denmark, which provide a record of shifting hydrological conditions for the past 6,700 years. The early part of the stratigraphic record (6,700-5,740 cal year BP) was wet, based on delta O-18(carb) and lithology, and corresponds to the Holocene Thermal Maximum. Shifts in primarily delta O-18(carb) indicate dry conditions prevailed from 5,740 to 2,800 cal year BP, although this was interrupted by very wet conditions from 5,300 to 5,150, 4,300 to 4,050 and 3,700 to 3,450 cal year BP. The timing of the latter two moist intervals is consistent with other Scandinavian paleoclimatic records. Dry conditions at Lake Bliden between 3,450 and 2,800 cal year BP is consistent with other paleolimnological records from southern Sweden but contrasts with records in central Sweden, possibly suggesting a more northerly trajectory of prevailing westerlies carrying moisture from the North Atlantic at this time. Overall, fluctuating moisture conditions at Lake Bliden appear to be strongly linked to changing sea surface temperatures in the Greenland, Iceland and Norwegian seas. After 2,800 cal year BP, sedimentology, magnetic susceptibility, delta C-13(ORG), delta C-13(carb) and delta O-18(carb) indicate a major reduction on water level, which caused the depositional setting at the coring site to shift from the profundal to littoral zone. The Roman Warm Period (2,200-1,500 cal year BP) appears dry based on enriched delta O-18(carb) values. Possible effects of human disturbance in the watershed after 820 cal year BP complicate attempts to interpret the stratigraphic record although tentative interpretation of the delta O-18(carb), magnetic susceptibility, delta C-13(ORG), delta C-13(carb) and delta O-18(carb) records suggest that the Medieval Warm Period was dry and the Little Ice Age was wet.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

This study represents the first detailed multi-proxy palaeoenvironmental investigation associated with a Late Iron Age lake-dwelling site in the eastern Baltic. The main objective was to reconstruct the environmental and vegetation dynamics associated with the establishment of the lake-dwelling and land-use during the last 2,000 years. A lacustrine sediment core located adjacent to a Late Iron Age lake-dwelling, medieval castle and Post-medieval manor was sampled in Lake Āraiši. The core was dated using spheroidal fly-ash particles and radiocarbon dating, and analysed in terms of pollen, non-pollen palynomorphs, diatoms, loss-on-ignition, magnetic susceptibility and element geochemistry. Associations between pollen and other proxies were statistically tested. During ad 1–700, the vicinity of Lake Āraiši was covered by forests and human activities were only small-scale with the first appearance of cereal pollen (Triticum and Secale cereale) after ad 400. The most significant changes in vegetation and environment occurred with the establishment of the lake-dwelling around ad 780 when the immediate surroundings of the lake were cleared for agriculture, and within the lake there were increased nutrient levels. The highest accumulation rates of coprophilous fungi coincide with the occupation of the lake-dwelling from ad 780–1050, indicating that parts of the dwelling functioned as byres for livestock. The conquest of tribal lands during the crusades resulted in changes to the ownership, administration and organisation of the land, but our results indicate that the form and type of agriculture and land-use continued much as it had during the preceding Late Iron Age.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Detailed analyses of the Lake Van pollen, Ca/K ratio and stable oxygen isotope record allow the identification of millennial-scale vegetation and environmental changes in eastern Anatolia throughout the last glacial (~75-15 ka BP). The climate within the last glacial was cold and dry, with low arboreal pollen (AP) levels. The driest and coldest period corresponds to Marine Isotope Stage (MIS) 2 (~28-14.5 ka BP) dominated by the highest values of xerophytic steppe vegetation. Our high-resolution multi proxy record shows rapid expansions and contractions of tree populations that reflects variability in temperature and moisture availability. This rapid vegetation and environmental changes can be linked to the stadial-interstadial pattern of the Dansgaard-Oeschger (DO) events as recorded in the Greenland ice cores. Periods of reduced moisture availability were characterized by enhanced xerophytic species and high terrigenous input from the Lake Van catchment area. Furthermore, comparison with the marine realm reveals that the complex atmosphere-ocean interaction can be explained by the strength and position of the westerlies, which is responsible for the supply of humidity in eastern Anatolia. Influenced by diverse topography of the Lake Van catchment, larger DO interstadials (e.g. DO 19, 17-16, 14, 12 and 8) show the highest expansion of temperate species within the last glacial. However, Heinrich events (HE), characterized by highest concentrations of ice-rafted debris (IRD) in marine sediments, are identified in eastern Anatolia by AP values not lower and high steppe components not more abundant than during DO stadials. In addition, this work is a first attempt to establish a continuous microscopic charcoal record over the last glacial in the Near East, which documents an initial immediate response to millennial-scale climate and environmental variability and enables us to shed light on the history of fire activity during the last glacial.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

A high-resolution multi-proxy record from Lake Van, eastern Anatolia, derived from a lacustrine sequence cored at the 357 m deep Ahlat Ridge (AR), allows a comprehensive view of paleoclimate and environmental history in the continental Near East during the last interglacial (LI). We combined paleovegetation (pollen), stable oxygen isotope (d18Obulk) and XRF data from the same sedimentary sequence, showing distinct variations during the period from 135 to 110 ka ago leading into and out of full interglacial conditions. The last interglacial plateau, as defined by the presence of thermophilous steppe-forest communities, lasted ca. 13.5 ka, from ~129.1-115.6 ka BP. The detailed palynological sequence at Lake Van documents a vegetation succession with several climatic phases: (I) the Pistacia zone (ca. 131.2-129.1 ka BP) indicates summer dryness and mild winter conditions during the initial warming, (II) the Quercus-Ulmus zone (ca. 129.1-127.2 ka BP) occurred during warm and humid climate conditions with enhanced evaporation, (III) the Carpinus zone (ca. 127.2-124.1 ka BP) suggest increasingly cooler and wetter conditions, and (IV) the expansion of Pinus at ~124.1 ka BP marks the onset of a colder/drier environment that extended into the interval of global ice growth. Pollen data suggest migration of thermophilous trees from refugial areas at the beginning of the last interglacial. Analogous to the current interglacial, the migration documents a time lag between the onset of climatic amelioration and the establishment of an oak steppe-forest, spanning 2.1 ka. Hence, the major difference between the last interglacial compared to the current interglacial (Holocene) is the abundance of Pinus as well as the decrease of deciduous broad-leaved trees, indicating higher continentality during the last interglacial. Finally, our results demonstrate intra-interglacial variability in the low mid-latitudes and suggest a close connection with the high-frequency climate variability recorded in Greenland ice cores.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Over the Uruguayan shelf and uppermost slope the coalescence of northward flowing Subantarctic Shelf Water and southward flowing Subtropical Shelf Water forms a distinct thermohaline front termed the Subtropical Shelf Front (STSF). Running in a SW direction diagonally across the shelf from the coastal waters at 32°S towards the shelf break at ca. 36°S, the STSF represents the shelf-ward extension of the Brazil-Malvinas Confluence zone. This study reconstructs latitudinal STSF shifts during the Holocene based on benthic foraminifera d18O and d13C, total organic carbon, carbonate contents, Ti/Ca, and grain-size distribution from a high-accumulation sedimentary record located at an uppermost continental-slope terrace. Our data provide direct evidence for: (1) a southern STSF position (to the South of the core site) at the beginning of the early Holocene (>9.4 cal ka BP) linked to a more southerly position of the Southern Westerly Winds in combination with restricted shelf circulation intensity due to lower sea level; (2) a gradual STSF northward migration (bypassing the core site towards the North) primarily forced by the northward migration of the Southern Westerly Winds from 9.4 cal ka BP onwards; (3) a relatively stable position of the front in the interval between 7.2 and 4.0 cal ka BP; (4) millennial-scale latitudinal oscillations close to 36°S of the STSF after 4.0 cal ka BP probably linked to the intensification in El Niño Southern Oscillation; and (5) a southward migration of the STSF during the last 200 years possibly linked to anthropogenic influences on the atmosphere.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The dominant processes determining biological structure in lakes at millennial timescales are complex. In this study, we used a multi-proxy approach to determine the relative importance of in-lake versus indirect processes on the Holocene development of an oligotrophic lake in SW Greenland (66.99°N, 50.97°W). A 14C and 210Pb-dated sediment core covering approximately 8500 years BP was analyzed for organic-inorganic carbon content, pigments, diatoms, chironomids, cladocerans, and stable isotopes (d13C, d18O). Relationships among the different proxies and a number of independent controlling variables (Holocene temperature, an isotope-inferred cooling period, and immigration of Betula nana into the catchment) were explored using redundancy analysis (RDA) independent of time. The main ecological trajectories in the lake biota were captured by ordination first axis sample scores (18-32% variance explained). The importance of the arrival of Betula (ca. 6500 years BP) into the catchment was indicated by a series of partial-constrained ordinations, uniquely explaining 12-17% of the variance in chironomids and up to 9% in pigments. Climate influences on lake biota were strongest during a short-lived cooling period (identified by altered stable isotopes) early in the development of the lake when all proxies changed rapidly, although only chironomids had a unique component (8% in a partial-RDA) explained by the cooling event. Holocene climate explained less variance than either catchment changes or biotic relationships. The sediment record at this site indicates the importance of catchment factors for lake development, the complexity of community trends even in relatively simple systems (invertebrates are the top predators in the lake) and the challenges of deriving palaeoclimate inferences from sediment records in low-Arctic freshwater lakes.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

We dated a continuous, ~22-m long sediment sequence from Lake Challa (Mt. Kilimanjaro area, Kenya/Tanzania) to produce a solid chronological framework for multi-proxy reconstructions of climate and environmental change in equatorial East Africa over the past 25,000 years. The age model is based on a total of 168 AMS 14C dates on bulk-organic matter, combined with a 210Pb chronology for recent sediments and corrected for a variable old-carbon age offset. This offset was estimated by i) pairing bulk-organic 14C dates with either 210Pb-derived time markers or 14C dates on grass charcoal, and ii) wiggle-matching high-density series of bulk-organic 14C dates. Variation in the old-carbon age offset through time is relatively modest, ranging from ~450 yr during glacial and late glacial time to ~200 yr during the early and mid-Holocene, and increasing again to ~250 yr today. The screened and corrected 14C dates were calibrated sequentially, statistically constrained by their stratigraphical order. As a result their constrained calendar-age distributions are much narrower, and the calibrated dates more precise, than if each 14C date had been calibrated on its own. The smooth-spline age-depth model has 95% age uncertainty ranges of ~50–230 yr during the Holocene and ~250–550 yr in the glacial section of the record. The d13C values of paired bulk-organic and grass-charcoal samples, and additional 14C dating on selected turbidite horizons, indicates that the old-carbon age offset in Lake Challa is caused by a variable contribution of old terrestrial organic matter eroded from soils, and controlled mainly by changes in vegetation cover within the crater basin.