967 resultados para multi-core
Resumo:
In this paper, we propose an extension to the I/O device architecture, as recommended in the PCI-SIG IOV specification, for virtualizing network I/O devices. The aim is to enable fine-grained controls to a virtual machine on the I/O path of a shared device. The architecture allows native access of I/O devices to virtual machines and provides device level QoS hooks for controlling VM specific device usage. For evaluating the architecture we use layered queuing network (LQN) models. We implement the architecture and evaluate it using simulation techniques, on the LQN model, to demonstrate the benefits. With the architecture, the benefit for network I/O is 60% more than what can be expected on the existing architecture. Also, the proposed architecture improves scalability in terms of the number of virtual machines intending to share the I/O device.
Resumo:
Simulation is an important means of evaluating new microarchitectures. With the invention of multi-core (CMP) platforms, simulators are becoming larger and more complex. However, with the availability of CMPs with larger caches and higher operating frequency, the wall clock time required for simulating an application has become comparatively shorter. Reducing this simulation time further is a great challenge, especially in the case of multi-threaded workload due to indeterminacy introduced due to simultaneously executing various threads. In this paper, we propose a technique for speeding multi-core simulation. The model of the processor core and cache are replaced with functional models, to achieve speedup. A timed Petri net model is used to estimate the execution time of the processor and the memory access latencies are estimated using hit/miss information obtained from the functional model of the cache. This model can be used to predict performance of data parallel applications or multiprogramming workload on CMP platform with various cache hierarchies and shared bus interconnect. The error in estimation of the execution time of an application is within 6%. The speedup achieved ranges between an average of 2x--4x over the cycle accurate simulator.
Resumo:
Rapid advancements in multi-core processor architectures coupled with low-cost, low-latency, high-bandwidth interconnects have made clusters of multi-core machines a common computing resource. Unfortunately, writing good parallel programs that efficiently utilize all the resources in such a cluster is still a major challenge. Various programming languages have been proposed as a solution to this problem, but are yet to be adopted widely to run performance-critical code mainly due to the relatively immature software framework and the effort involved in re-writing existing code in the new language. In this paper, we motivate and describe our initial study in exploring CUDA as a programming language for a cluster of multi-cores. We develop CUDA-For-Clusters (CFC), a framework that transparently orchestrates execution of CUDA kernels on a cluster of multi-core machines. The well-structured nature of a CUDA kernel, the growing popularity, support and stability of the CUDA software stack collectively make CUDA a good candidate to be considered as a programming language for a cluster. CFC uses a mixture of source-to-source compiler transformations, a work distribution runtime and a light-weight software distributed shared memory to manage parallel executions. Initial results on running several standard CUDA benchmark programs achieve impressive speedups of up to 7.5X on a cluster with 8 nodes, thereby opening up an interesting direction of research for further investigation.
Resumo:
We present a new software framework for the implementation of applications that use stencil computations on block-structured grids to solve partial differential equations. A key feature of the framework is the extensive use of automatic source code generation which is used to achieve high performance on a range of leading multi-core processors. Results are presented for a simple model stencil running on Intel and AMD CPUs as well as the NVIDIA GT200 GPU. The generality of the framework is demonstrated through the implementation of a complete application consisting of many different stencil computations, taken from the field of computational fluid dynamics. © 2010 IEEE.
Resumo:
Sectional velocity distribution of the East China Sea Kuroshio is one of the basic points in the study of the Kuroshio. Hydrographic temperature and salinity data at G-PN section in the East China Sea from June 1955 to November 2001 are collected and properly processed to calculate the geostrophic current using dynamic height method at the transect of the Kuroshio. After analysis of calculation results, the basic current structure of the Kuroshio in its main part is examined together with scalar estimate and characters of multi- core structure, and spacial-temporal variations of current cores' position. Main result shows that (1) single-core structure, double-core structure and multi-core structure are basic forms in axial part of the Kuroshio; (2) abvious temporal variations exist in current structure of the Kuroshio; (3) the current of structure of the Kuroshio has distinctly seasonal association. The number of current cores is on the high side of core numbers in average and multi-core stucture appears in fall mostly.
Resumo:
The use of efficient synchronization mechanisms is crucial for implementing fine grained parallel programs on modern shared cache multi-core architectures. In this paper we study this problem by considering Single-Producer/Single- Consumer (SPSC) coordination using unbounded queues. A novel unbounded SPSC algorithm capable of reducing the row synchronization latency and speeding up Producer-Consumer coordination is presented. The algorithm has been extensively tested on a shared-cache multi-core platform and a sketch proof of correctness is presented. The queues proposed have been used as basic building blocks to implement the FastFlow parallel framework, which has been demonstrated to offer very good performance for fine-grain parallel applications. © 2012 Springer-Verlag.
Resumo:
Data flow techniques have been around since the early '70s when they were used in compilers for sequential languages. Shortly after their introduction they were also consideredas a possible model for parallel computing, although the impact here was limited. Recently, however, data flow has been identified as a candidate for efficient implementation of various programming models on multi-core architectures. In most cases, however, the burden of determining data flow "macro" instructions is left to the programmer, while the compiler/run time system manages only the efficient scheduling of these instructions. We discuss a structured parallel programming approach supporting automatic compilation of programs to macro data flow and we show experimental results demonstrating the feasibility of the approach and the efficiency of the resulting "object" code on different classes of state-of-the-art multi-core architectures. The experimental results use different base mechanisms to implement the macro data flow run time support, from plain pthreads with condition variables to more modern and effective lock- and fence-free parallel frameworks. Experimental results comparing efficiency of the proposed approach with those achieved using other, more classical, parallel frameworks are also presented. © 2012 IEEE.