950 resultados para multi-channel processing
Resumo:
We have designed and fabricated a new type of fibre Bragg grating (FBG) with a V-shaped dispersion profile for multi-channel dispersion compensation in communication links.
Resumo:
We propose a new type of fiber Bragg grating (FBG) with a V-shaped dispersion profile. We demonstrate that such V-shaped FBGs bring advantages in manipulation of optical signals compared to conventional FBGs with a constant dispersion, e.g., they can produce larger chirp for the same input pulsewidth and/or can be used as pulse shapers. Application of the proposed V-shaped FBGs for signal prechirping in fiber transmission is examined. The proposed design of the V-shaped FBG can be easily extended to embrace multichannel devices.
Resumo:
We have designed and fabricated a new type of fibre Bragg grating (FBG) with a V-shaped dispersion profile for multi-channel dispersion compensation in communication links.
Resumo:
Infrared (IR) interferometry is a method for measuring the line-electron density of fusion plasmas. The significant performance achieved by FPGAs in solving digital signal processing tasks advocates the use of this type of technology in two-color IR interferometers of modern stellarators, such as the TJ-II (Madrid, Spain) and the future W7-X (Greifswald, Germany). In this work the implementation of a line-average electron density measuring system in an FPGA device is described. Several optimizations for multichannel systems are detailed and test results from the TJ-II as well as from a W7-X prototype are presented.
Resumo:
We discuss the development of a simple globally prioritized multi-channel medium access control (MAC) protocol for wireless networks. This protocol provides “hard” pre-run-time real-time guarantees to sporadic message streams, exploits a very large fraction of the capacity of all channels for “hard” real-time traffic and also makes it possible to fully utilize the channels with non real-time traffic when hard real-time messages do not request to be transmitted. The potential of such protocols for real-time applications is discussed and a schedulability analysis is also presented.
Resumo:
To date, published studies of alluvial bar architecture in large rivers have been restricted mostly to case studies of individual bars and single locations. Relatively little is known about how the depositional processes and sedimentary architecture of kilometre-scale bars vary within a multi-kilometre reach or over several hundreds of kilometres downstream. This study presents Ground Penetrating Radar and core data from 11, kilometre-scale bars from the Rio Parana, Argentina. The investigated bars are located between 30km upstream and 540km downstream of the Rio Parana - Rio Paraguay confluence, where a significant volume of fine-grained suspended sediment is introduced into the network. Bar-scale cross-stratified sets, with lengths and widths up to 600m and thicknesses up to 12m, enable the distinction of large river deposits from stacked deposits of smaller rivers, but are only present in half the surface area of the bars. Up to 90% of bar-scale sets are found on top of finer-grained ripple-laminated bar-trough deposits. Bar-scale sets make up as much as 58% of the volume of the deposits in small, incipient mid-channel bars, but this proportion decreases significantly with increasing age and size of the bars. Contrary to what might be expected, a significant proportion of the sedimentary structures found in the Rio Parana is similar in scale to those found in much smaller rivers. In other words, large river deposits are not always characterized by big structures that allow a simple interpretation of river scale. However, the large scale of the depositional units in big rivers causes small-scale structures, such as ripple sets, to be grouped into thicker cosets, which indicate river scale even when no obvious large-scale sets are present. The results also show that the composition of bars differs between the studied reaches upstream and downstream of the confluence with the Rio Paraguay. Relative to other controls on downstream fining, the tributary input of fine-grained suspended material from the Rio Paraguay causes a marked change in the composition of the bar deposits. Compared to the upstream reaches, the sedimentary architecture of the downstream reaches in the top ca 5m of mid-channel bars shows: (i) an increase in the abundance and thickness (up to metre-scale) of laterally extensive (hundreds of metres) fine-grained layers; (ii) an increase in the percentage of deposits comprised of ripple sets (to >40% in the upper bar deposits); and (iii) an increase in bar-trough deposits and a corresponding decrease in bar-scale cross-strata (<10%). The thalweg deposits of the Rio Parana are composed of dune sets, even directly downstream from the Rio Paraguay where the upper channel deposits are dominantly fine-grained. Thus, the change in sedimentary facies due to a tributary point-source of fine-grained sediment is primarily expressed in the composition of the upper bar deposits.
Resumo:
Free induction decay (FID) navigators were found to qualitatively detect rigid-body head movements, yet it is unknown to what extent they can provide quantitative motion estimates. Here, we acquired FID navigators at different sampling rates and simultaneously measured head movements using a highly accurate optical motion tracking system. This strategy allowed us to estimate the accuracy and precision of FID navigators for quantification of rigid-body head movements. Five subjects were scanned with a 32-channel head coil array on a clinical 3T MR scanner during several resting and guided head movement periods. For each subject we trained a linear regression model based on FID navigator and optical motion tracking signals. FID-based motion model accuracy and precision was evaluated using cross-validation. FID-based prediction of rigid-body head motion was found to be with a mean translational and rotational error of 0.14±0.21 mm and 0.08±0.13(°) , respectively. Robust model training with sub-millimeter and sub-degree accuracy could be achieved using 100 data points with motion magnitudes of ±2 mm and ±1(°) for translation and rotation. The obtained linear models appeared to be subject-specific as inter-subject application of a "universal" FID-based motion model resulted in poor prediction accuracy. The results show that substantial rigid-body motion information is encoded in FID navigator signal time courses. Although, the applied method currently requires the simultaneous acquisition of FID signals and optical tracking data, the findings suggest that multi-channel FID navigators have a potential to complement existing tracking technologies for accurate rigid-body motion detection and correction in MRI.
Resumo:
The development of a set of multi-channel dichroics which includes a 6 channel dichroic operating over the wavelength region from 0.3 to 52µm is described. In order to achieve the optimum performance, the optical constants of PbTe, Ge and CdTe coatings in the strongly absorptive region have been determined by use of a new iterative method using normal incidence reflectance measurement of the multilayer together with initial values of energy gap Eg and infinite refractive index n for the semiconductor model. The design and manufacture of the dichroics is discussed and the final results are presented.