879 resultados para motor vehicle emissions
Resumo:
"Project: 90/009."
Resumo:
Background, aim, and scope Urban motor vehicle fleets are a major source of particulate matter pollution, especially of ultrafine particles (diameters < 0.1 µm), and exposure to particulate matter has known serious health effects. A considerable body of literature is available on vehicle particle emission factors derived using a wide range of different measurement methods for different particle sizes, conducted in different parts of the world. Therefore the choice as to which are the most suitable particle emission factors to use in transport modelling and health impact assessments presented as a very difficult task. The aim of this study was to derive a comprehensive set of tailpipe particle emission factors for different vehicle and road type combinations, covering the full size range of particles emitted, which are suitable for modelling urban fleet emissions. Materials and methods A large body of data available in the international literature on particle emission factors for motor vehicles derived from measurement studies was compiled and subjected to advanced statistical analysis, to determine the most suitable emission factors to use in modelling urban fleet emissions. Results This analysis resulted in the development of five statistical models which explained 86%, 93%, 87%, 65% and 47% of the variation in published emission factors for particle number, particle volume, PM1, PM2.5 and PM10 respectively. A sixth model for total particle mass was proposed but no significant explanatory variables were identified in the analysis. From the outputs of these statistical models, the most suitable particle emission factors were selected. This selection was based on examination of the statistical robustness of the statistical model outputs, including consideration of conservative average particle emission factors with the lowest standard errors, narrowest 95% confidence intervals and largest sample sizes, and the explanatory model variables, which were Vehicle Type (all particle metrics), Instrumentation (particle number and PM2.5), Road Type (PM10) and Size Range Measured and Speed Limit on the Road (particle volume). Discussion A multiplicity of factors need to be considered in determining emission factors that are suitable for modelling motor vehicle emissions, and this study derived a set of average emission factors suitable for quantifying motor vehicle tailpipe particle emissions in developed countries. Conclusions The comprehensive set of tailpipe particle emission factors presented in this study for different vehicle and road type combinations enable the full size range of particles generated by fleets to be quantified, including ultrafine particles (measured in terms of particle number). These emission factors have particular application for regions which may have a lack of funding to undertake measurements, or insufficient measurement data upon which to derive emission factors for their region. Recommendations and perspectives In urban areas motor vehicles continue to be a major source of particulate matter pollution and of ultrafine particles. It is critical that in order to manage this major pollution source methods are available to quantify the full size range of particles emitted for traffic modelling and health impact assessments.
Resumo:
The intake fraction (iF) of nonreactive constituents of exhaust from mobile vehicles in the urban area of HongKong is investigated using available monitoring data for carbon monoxide (CO) as a tracer of opportunity. Correcting for regional transport of carbon monoxide into HongKong, the annual-average iF for nonreactive motor vehicle emissions within the city is estimated to be around 270 per million. This estimated iF is much higher than values previously reported for vehicle emissions in US urban areas, Helsinki and Beijing, and somewhat lower than those reported for a densely populated street canyon in downtown Manhattan, New York City, or for emissions into indoor environments. The reported differences in intakefractions in various cities mainly result from the differences in local population densities. Our analysis highlights the importance of accounting for the influence of upwind transport of pollutants when using ambient data to estimate iF for an urban area. For vehicleexhaust in HongKong, it is found that the in/near vehicle microenvironment contributes similarly to the indoor home environment when accounting for the overall iF for children and adults. Keywords Intakefraction; Vehicle emission; Regional pollutant transport; Carbon monoxide; Exposure
Reducing Motor Vehicle Greenhouse Gas Emissions in a Non-California State: A Case Study of Minnesota
Resumo:
Assessment and prediction of the impact of vehicular traffic emissions on air quality and exposure levels requires knowledge of vehicle emission factors. The aim of this study was quantification of emission factors from an on road, over twelve months measurement program conducted at two sites in Brisbane: 1) freeway type (free flowing traffic at about 100 km/h, fleet dominated by small passenger cars - Tora St); and 2) urban busy road with stop/start traffic mode, fleet comprising a significant fraction of heavy duty vehicles - Ipswich Rd. A physical model linking concentrations measured at the road for specific meteorological conditions with motor vehicle emission factors was applied for data analyses. The focus of the study was on submicrometer particles; however the measurements also included supermicrometer particles, PM2.5, carbon monoxide, sulfur dioxide, oxides of nitrogen. The results of the study are summarised in this paper. In particular, the emission factors for submicrometer particles were 6.08 x 1013 and 5.15 x 1013 particles per vehicle-1 km-1 for Tora St and Ipswich Rd respectively and for supermicrometer particles for Tora St, 1.48 x 109 particles per vehicle-1 km-1. Emission factors of diesel vehicles at both sites were about an order of magnitude higher than emissions from gasoline powered vehicles. For submicrometer particles and gasoline vehicles the emission factors were 6.08 x 1013 and 4.34 x 1013 particles per vehicle-1 km-1 for Tora St and Ipswich Rd, respectively, and for diesel vehicles were 5.35 x 1014 and 2.03 x 1014 particles per vehicle-1 km-1 for Tora St and Ipswich Rd, respectively. For supermicrometer particles at Tora St the emission factors were 2.59 x 109 and 1.53 x 1012 particles per vehicle-1 km-1, for gasoline and diesel vehicles, respectively.
Resumo:
Motor vehicles are major emitters of gaseous and particulate pollution in urban areas, and exposure to particulate pollution can have serious health effects, ranging from respiratory and cardiovascular disease to mortality. Motor vehicle tailpipe particle emissions span a broad size range from 0.003-10µm, and are measured as different subsets of particle mass concentrations or particle number count. However, no comprehensive inventories currently exist in the international published literature covering this wide size range. This paper presents the first published comprehensive inventory of motor vehicle tailpipe particle emissions covering the full size range of particles emitted. The inventory was developed for urban South-East Queensland by combining two techniques from distinctly different disciplines, from aerosol science and transport modelling. A comprehensive set of particle emission factors were combined with traffic modelling, and tailpipe particle emissions were quantified for particle number (ultrafine particles), PM1, PM2.5 and PM10 for light and heavy duty vehicles and buses. A second aim of the paper involved using the data derived in this inventory for scenario analyses, to model the particle emission implications of different proportions of passengers travelling in light duty vehicles and buses in the study region, and to derive an estimate of fleet particle emissions in 2026. It was found that heavy duty vehicles (HDVs) in the study region were major emitters of particulate matter pollution, and although they contributed only around 6% of total regional vehicle kilometres travelled, they contributed more than 50% of the region’s particle number (ultrafine particles) and PM1 emissions. With the freight task in the region predicted to double over the next 20 years, this suggests that HDVs need to be a major focus of mitigation efforts. HDVs dominated particle number (ultrafine particles) and PM1 emissions; and LDV PM2.5 and PM10 emissions. Buses contributed approximately 1-2% of regional particle emissions.
Resumo:
Measurements in the exhaust plume of a petrol-driven motor car showed that molecular cluster ions of both signs were present in approximately equal amounts. The emission rate increased sharply with engine speed while the charge symmetry remained unchanged. Measurements at the kerbside of nine motorways and five city roads showed that the mean total cluster ion concentration near city roads (603 cm-3) was about one-half of that near motorways (1211 cm-3) and about twice as high as that in the urban background (269 cm-3). Both positive and negative ion concentrations near a motorway showed a significant linear increase with traffic density (R2=0.3 at p<0.05) and correlated well with each other in real time (R2=0.87 at p<0.01). Heavy duty diesel vehicles comprised the main source of ions near busy roads. Measurements were conducted as a function of downwind distance from two motorways carrying around 120-150 vehicles per minute. Total traffic-related cluster ion concentrations decreased rapidly with distance, falling by one-half from the closest approach of 2m to 5m of the kerb. Measured concentrations decreased to background at about 15m from the kerb when the wind speed was 1.3 m s-1, this distance being greater at higher wind speed. The number and net charge concentrations of aerosol particles were also measured. Unlike particles that were carried downwind to distances of a few hundred metres, cluster ions emitted by motor vehicles were not present at more than a few tens of metres from the road.
Resumo:
streets in local residential areas in large cities, real traffic tests for pollutant emissions and fuel consumption have been carried out in Madrid city centre. Emission concentration and car activity were simultaneously measured by a Portable Emissions Measurement System. Real life tests carried out at different times and on different days were performed with a turbo-diesel engine light vehicle equipped with an oxidizer catalyst and using different driving styles with a previously trained driver. The results show that by reducing the speed limit from 50 km h-1 to 30 km h-1, using a normal driving style, the time taken for a given trip does not increase, but fuel consumption and NOx, CO and PM emissions are clearly reduced. Therefore, the main conclusion of this work is that reducing the speed limit in some narrow streets in residential and commercial areas or in a city not only increases pedestrian safety, but also contributes to reducing the environmental impact of motor vehicles and reducing fuel consumption. In addition, there is also a reduction in the greenhouse gas emissions resulting from the combustion of the fuel.
Resumo:
National Highway Traffic Safety Administration, Washington, D.C.
Resumo:
Background: The proportion of older individuals in the driving population is predicted to increase in the next 50 years. This has important implications for driving safety as abilities which are important for safe driving, such as vision (which accounts for the majority of the sensory input required for driving), processing ability and cognition have been shown to decline with age. The current methods employed for screening older drivers upon re-licensure are also vision based. This study, which investigated social, behavioural and professional aspects involved with older drivers, aimed to determine: (i) if the current visual standards in place for testing upon re-licensure are effective in reducing the older driver fatality rate in Australia; (ii) if the recommended visual standards are actually implemented as part of the testing procedures by Australian optometrists; and (iii) if there are other non-standardised tests which may be better at predicting the on-road incident-risk (including near misses and minor incidents) in older drivers than those tests recommended in the standards. Methods: For the first phase of the study, state-based age- and gender-stratified numbers of older driver fatalities for 2000-2003 were obtained from the Australian Transportation Safety Bureau database. Poisson regression analyses of fatality rates were considered by renewal frequency and jurisdiction (as separate models), adjusting for possible confounding variables of age, gender and year. For the second phase, all practising optometrists in Australia were surveyed on the vision tests they conduct in consultations relating to driving and their knowledge of vision requirements for older drivers. Finally, for the third phase of the study to investigate determinants of on-road incident risk, a stratified random sample of 600 Brisbane residents aged 60 years and were selected and invited to participate using an introductory letter explaining the project requirements. In order to capture the number and type of road incidents which occurred for each participant over 12 months (including near misses and minor incidents), an important component of the prospective research study was the development and validation of a driving diary. The diary was a tool in which incidents that occurred could be logged at that time (or very close in time to which they occurred) and thus, in comparison with relying on participant memory over time, recall bias of incident occurrence was minimised. Association between all visual tests, cognition and scores obtained for non-standard functional tests with retrospective and prospective incident occurrence was investigated. Results: In the first phase,rivers aged 60-69 years had a 33% lower fatality risk (Rate Ratio [RR] = 0.75, 95% CI 0.32-1.77) in states with vision testing upon re-licensure compared with states with no vision testing upon re-licensure, however, because the CIs are wide, crossing 1.00, this result should be regarded with caution. However, overall fatality rates and fatality rates for those aged 70 years and older (RR=1.17, CI 0.64-2.13) did not differ between states with and without license renewal procedures, indicating no apparent benefit in vision testing legislation. For the second phase of the study, nearly all optometrists measured visual acuity (VA) as part of a vision assessment for re-licensing, however, 20% of optometrists did not perform any visual field (VF) testing and only 20% routinely performed automated VF on older drivers, despite the standards for licensing advocating automated VF as part of the vision standard. This demonstrates the need for more effective communication between the policy makers and those responsible for carrying out the standards. It may also indicate that the overall higher driver fatality rate in jurisdictions with vision testing requirements is resultant as the tests recommended by the standards are only partially being conducted by optometrists. Hence a standardised protocol for the screening of older drivers for re-licensure across the nation must be established. The opinions of Australian optometrists with regard to the responsibility of reporting older drivers who fail to meet the licensing standards highlighted the conflict between maintaining patient confidentiality or upholding public safety. Mandatory reporting requirements of those drivers who fail to reach the standards necessary for driving would minimise potential conflict between the patient and their practitioner, and help maintain patient trust and goodwill. The final phase of the PhD program investigated the efficacy of vision, functional and cognitive tests to discriminate between at-risk and safe older drivers. Nearly 80% of the participants experienced an incident of some form over the prospective 12 months, with the total incident rate being 4.65/10 000 km. Sixty-three percent reported having a near miss and 28% had a minor incident. The results from the prospective diary study indicate that the current vision screening tests (VA and VF) used for re-licensure do not accurately predict older drivers who are at increased odds of having an on-road incident. However, the variation in visual measurements of the cohort was narrow, also affecting the results seen with the visual functon questionnaires. Hence a larger cohort with greater variability should be considered for a future study. A slightly lower cognitive level (as measured with the Mini-Mental State Examination [MMSE]) did show an association with incident involvement as did slower reaction time (RT), however the Useful-Field-of-View (UFOV) provided the most compelling results of the study. Cut-off values of UFOV processing (>23.3ms), divided attention (>113ms), selective attention (>258ms) and overall score (moderate/ high/ very high risk) were effective in determining older drivers at increased odds of having any on-road incident and the occurrence of minor incidents. Discussion: The results have shown that for the 60-69 year age-group, there is a potential benefit in testing vision upon licence renewal. However, overall fatality rates and fatality rates for those aged 70 years and older indicated no benefit in vision testing legislation and suggests a need for inclusion of screening tests which better predict on-road incidents. Although VA is routinely performed by Australian optometrists on older drivers renewing their licence, VF is not. Therefore there is a need for a protocol to be developed and administered which would result in standardised methods conducted throughout the nation for the screening of older drivers upon re-licensure. Communication between the community, policy makers and those conducting the protocol should be maximised. By implementing a standardised screening protocol which incorporates a level of mandatory reporting by the practitioner, the ethical dilemma of breaching patient confidentiality would also be resolved. The tests which should be included in this screening protocol, however, cannot solely be ones which have been implemented in the past. In this investigation, RT, MMSE and UFOV were shown to be better determinants of on-road incidents in older drivers than VA and VF, however, as previously mentioned, there was a lack of variability in visual status within the cohort. Nevertheless, it is the recommendation from this investigation, that subject to appropriate sensitivity and specificity being demonstrated in the future using a cohort with wider variation in vision, functional performance and cognition, these tests of cognition and information processing should be added to the current protocol for the screening of older drivers which may be conducted at licensing centres across the nation.
Resumo:
OBJECTIVES: To quantify the driving difficulties of older adults using a detailed assessment of driving performance and to link this with self-reported retrospective and prospective crashes. DESIGN: Prospective cohort study. SETTING: On-road driving assessment. PARTICIPANTS: Two hundred sixty-seven community-living adults aged 70 to 88 randomly recruited through the electoral roll. MEASUREMENTS: Performance on a standardized measure of driving performance. RESULTS: Lane positioning, approach, and blind spot monitoring were the most common error types, and errors occurred most frequently in situations involving merging and maneuvering. Drivers reporting more retrospective or prospective crashes made significantly more driving errors. Driver instructor interventions during self-navigation (where the instructor had to brake or take control of the steering to avoid an accident) were significantly associated with higher retrospective and prospective crashes; every instructor intervention almost doubled prospective crash risk. CONCLUSION: These findings suggest that on-road driving assessment provides useful information on older driver difficulties, with the self-directed component providing the most valuable information.
Resumo:
Research examining post-trauma pathology indicates negative outcomes can differ as a function of the type of trauma experienced. Such research has yet to be published when looking at positive post-trauma changes. Ninety-Four survivors of trauma, forming three groups, completed the Posttraumatic Growth Inventory (PTGI) and Impact of Events Scale-Revised (IES-R). Groups comprised survivors of i) sexual abuse ii) motor vehicle accidents iii) bereavement. Results indicted differences in growth between the groups with the bereaved reporting higher levels of growth than other survivors and sexual abuse survivors demonstrated higher levels of PTSD symptoms than the other groups. However, this did not preclude sexual abuse survivors from also reporting moderate levels of growth. Results are discussed with relation to fostering growth through clinical practice.
Resumo:
Statistical modeling of traffic crashes has been of interest to researchers for decades. Over the most recent decade many crash models have accounted for extra-variation in crash counts—variation over and above that accounted for by the Poisson density. The extra-variation – or dispersion – is theorized to capture unaccounted for variation in crashes across sites. The majority of studies have assumed fixed dispersion parameters in over-dispersed crash models—tantamount to assuming that unaccounted for variation is proportional to the expected crash count. Miaou and Lord [Miaou, S.P., Lord, D., 2003. Modeling traffic crash-flow relationships for intersections: dispersion parameter, functional form, and Bayes versus empirical Bayes methods. Transport. Res. Rec. 1840, 31–40] challenged the fixed dispersion parameter assumption, and examined various dispersion parameter relationships when modeling urban signalized intersection accidents in Toronto. They suggested that further work is needed to determine the appropriateness of the findings for rural as well as other intersection types, to corroborate their findings, and to explore alternative dispersion functions. This study builds upon the work of Miaou and Lord, with exploration of additional dispersion functions, the use of an independent data set, and presents an opportunity to corroborate their findings. Data from Georgia are used in this study. A Bayesian modeling approach with non-informative priors is adopted, using sampling-based estimation via Markov Chain Monte Carlo (MCMC) and the Gibbs sampler. A total of eight model specifications were developed; four of them employed traffic flows as explanatory factors in mean structure while the remainder of them included geometric factors in addition to major and minor road traffic flows. The models were compared and contrasted using the significance of coefficients, standard deviance, chi-square goodness-of-fit, and deviance information criteria (DIC) statistics. The findings indicate that the modeling of the dispersion parameter, which essentially explains the extra-variance structure, depends greatly on how the mean structure is modeled. In the presence of a well-defined mean function, the extra-variance structure generally becomes insignificant, i.e. the variance structure is a simple function of the mean. It appears that extra-variation is a function of covariates when the mean structure (expected crash count) is poorly specified and suffers from omitted variables. In contrast, when sufficient explanatory variables are used to model the mean (expected crash count), extra-Poisson variation is not significantly related to these variables. If these results are generalizable, they suggest that model specification may be improved by testing extra-variation functions for significance. They also suggest that known influences of expected crash counts are likely to be different than factors that might help to explain unaccounted for variation in crashes across sites
Resumo:
There has been considerable research conducted over the last 20 years focused on predicting motor vehicle crashes on transportation facilities. The range of statistical models commonly applied includes binomial, Poisson, Poisson-gamma (or negative binomial), zero-inflated Poisson and negative binomial models (ZIP and ZINB), and multinomial probability models. Given the range of possible modeling approaches and the host of assumptions with each modeling approach, making an intelligent choice for modeling motor vehicle crash data is difficult. There is little discussion in the literature comparing different statistical modeling approaches, identifying which statistical models are most appropriate for modeling crash data, and providing a strong justification from basic crash principles. In the recent literature, it has been suggested that the motor vehicle crash process can successfully be modeled by assuming a dual-state data-generating process, which implies that entities (e.g., intersections, road segments, pedestrian crossings, etc.) exist in one of two states—perfectly safe and unsafe. As a result, the ZIP and ZINB are two models that have been applied to account for the preponderance of “excess” zeros frequently observed in crash count data. The objective of this study is to provide defensible guidance on how to appropriate model crash data. We first examine the motor vehicle crash process using theoretical principles and a basic understanding of the crash process. It is shown that the fundamental crash process follows a Bernoulli trial with unequal probability of independent events, also known as Poisson trials. We examine the evolution of statistical models as they apply to the motor vehicle crash process, and indicate how well they statistically approximate the crash process. We also present the theory behind dual-state process count models, and note why they have become popular for modeling crash data. A simulation experiment is then conducted to demonstrate how crash data give rise to “excess” zeros frequently observed in crash data. It is shown that the Poisson and other mixed probabilistic structures are approximations assumed for modeling the motor vehicle crash process. Furthermore, it is demonstrated that under certain (fairly common) circumstances excess zeros are observed—and that these circumstances arise from low exposure and/or inappropriate selection of time/space scales and not an underlying dual state process. In conclusion, carefully selecting the time/space scales for analysis, including an improved set of explanatory variables and/or unobserved heterogeneity effects in count regression models, or applying small-area statistical methods (observations with low exposure) represent the most defensible modeling approaches for datasets with a preponderance of zeros