956 resultados para motor controller comparison
Resumo:
Permanent magnet (PM) motors utilising ironless stator structures have been incorporated into a wide variety of applications where high efficiency and stringent torque control are required. With recent developments in magnetic materials, improved design strategies, and power outputs of up to 40kW, PM motors have become an attractive candidate for traction drives in electric and hybrid electric vehicles. However, due to their large air gaps and ironless stators these motors can have inductances as low as 2μH, imposing increased requirements on the converter to minimise current ripple. Multilevel converters with n cells can effectively increase the motor inductance by a factor of n2 and are an excellent approach to minimise the motor ripple current. Furthermore by indirectly coupling the outputs of each cell, improvements in converter input and cell ripple current can also be realised. This paper examines the issues in designing a high current indirectly coupled multilevel motor controller for an ironless BLDC traction drive and highlights the limitations of the common ladder core structure.
Resumo:
This study was a step forward in modeling, simulation and microcontroller implementation of a high performance control algorithm for the motor of a blood pump. The rotor angle is sensed using three Hall effect sensors and an algorithm is developed to obtain better angular resolution from the three signals for better discrete-time updates of the controller. The performance of the system was evaluated in terms of actual and reference speeds, stator currents and power consumption over a range of reference speeds up to 4000 revolutions per minute. The use of fewer low cost Hall effect sensors compared to expensive high resolution sensors could reduce the cost of blood pumps for total artificial hearts.
Resumo:
A field oriented control (FOC) algorithm is simulated and implemented for use with a permanent magnet synchronous motor (PMSM). Rotor position is sensed using Hall effect switches on the stator because other hardware position sensors attached to the rotor may not be desirable or cost effective for certain applications. This places a limit on the resolution of position sensing – only a few Hall effect switches can be placed. In this simulation, three sensors are used and the position information is obtained at higher resolution by estimating it from the rotor dynamics, as shown in literature previously. This study compares the performance of the method with an incremental encoder using simulations. The FOC algorithm is implemented using Digital Motor Control (DMC) and IQ Texas Instruments libraries from a Simulink toolbox called Embedded Coder, and downloaded into a TI microcontroller (TMS320F28335) known as the Piccolo via Code Composer Studio (CCS).
Resumo:
This paper shows how a minimal neural network model of the cerebellum may be embedded within a sensory-neuro-muscular control system that mimics known anatomy and physiology. With this embedding, cerebellar learning promotes load compensation while also allowing both coactivation and reciprocal inhibition of sets of antagonist muscles. In particular, we show how synaptic long term depression guided by feedback from muscle stretch receptors can lead to trans-cerebellar gain changes that are load-compensating. It is argued that the same processes help to adaptively discover multi-joint synergies. Simulations of rapid single joint rotations under load illustrates design feasibility and stability.
Resumo:
Shoulder arthroscopic surgeries evolve with intense postoperative pain. Several analgesic techniques have been advocated. The aim of this study was to compare suprascapular and axillary nerve blocks in shoulder arthroscopy using the interscalene approach to brachial plexus blockade. According to the technique used, sixty-eight patients were allocated into two groups: interscalene group (IG, n=34) and selective group (SG, n=34), with neurostimulation approach used for both techniques. After appropriate motor response, IG received 30 mL of 0.33% levobupivacaine in 50% enantiomeric excess with adrenalin 1:200,000. After motor response of suprascapular and axillary nerves, SG received 15 mL of the same substance on each nerve. General anesthesia was then administered. Variables assessed were time to perform the blocks, analgesia, opioid consumption, motor block, cardiovascular stability, patient satisfaction and acceptability. Time for interscalene blockade was significantly shorter than for selective blockade. Analgesia was significantly higher in the immediate postoperative period in IG and in the late postoperative period in SG. Morphine consumption was significantly higher in the first hour in SG. Motor block was significantly lower in SG. There was no difference between groups regarding cardiocirculatory stability and patient satisfaction and acceptability. Failure occurred in IG (1) and SG (2). Both techniques are safe, effective, and with the same degree of satisfaction and acceptability. The selective blockade of both nerves showed satisfactory analgesia, with the advantage of providing motor block restricted to the shoulder.
Resumo:
The asynchronous polyphase induction motor has been the motor of choice in industrial settings for about the past half century because power electronics can be used to control its output behavior. Before that, the dc motor was widely used because of its easy speed and torque controllability. The two main reasons why this might be are its ruggedness and low cost. The induction motor is a rugged machine because it is brushless and has fewer internal parts that need maintenance or replacement. This makes it low cost in comparison to other motors, such as the dc motor. Because of these facts, the induction motor and drive system have been gaining market share in industry and even in alternative applications such as hybrid electric vehicles and electric vehicles. The subject of this thesis is to ascertain various control algorithms’ advantages and disadvantages and give recommendations for their use under certain conditions and in distinct applications. Four drives will be compared as fairly as possible by comparing their parameter sensitivities, dynamic responses, and steady-state errors. Different switching techniques are used to show that the motor drive is separate from the switching scheme; changing the switching scheme produces entirely different responses for each motor drive.
Resumo:
Electrical Power Assisted Steering system (EPAS) will likely be used on future automotive power steering systems. The sinusoidal brushless DC (BLDC) motor has been identified as one of the most suitable actuators for the EPAS application. Motor characteristic variations, which can be indicated by variations of the motor parameters such as the coil resistance and the torque constant, directly impart inaccuracies in the control scheme based on the nominal values of parameters and thus the whole system performance suffers. The motor controller must address the time-varying motor characteristics problem and maintain the performance in its long service life. In this dissertation, four adaptive control algorithms for brushless DC (BLDC) motors are explored. The first algorithm engages a simplified inverse dq-coordinate dynamics controller and solves for the parameter errors with the q-axis current (iq) feedback from several past sampling steps. The controller parameter values are updated by slow integration of the parameter errors. Improvement such as dynamic approximation, speed approximation and Gram-Schmidt orthonormalization are discussed for better estimation performance. The second algorithm is proposed to use both the d-axis current (id) and the q-axis current (iq) feedback for parameter estimation since id always accompanies iq. Stochastic conditions for unbiased estimation are shown through Monte Carlo simulations. Study of the first two adaptive algorithms indicates that the parameter estimation performance can be achieved by using more history data. The Extended Kalman Filter (EKF), a representative recursive estimation algorithm, is then investigated for the BLDC motor application. Simulation results validated the superior estimation performance with the EKF. However, the computation complexity and stability may be barriers for practical implementation of the EKF. The fourth algorithm is a model reference adaptive control (MRAC) that utilizes the desired motor characteristics as a reference model. Its stability is guaranteed by Lyapunov’s direct method. Simulation shows superior performance in terms of the convergence speed and current tracking. These algorithms are compared in closed loop simulation with an EPAS model and a motor speed control application. The MRAC is identified as the most promising candidate controller because of its combination of superior performance and low computational complexity. A BLDC motor controller developed with the dq-coordinate model cannot be implemented without several supplemental functions such as the coordinate transformation and a DC-to-AC current encoding scheme. A quasi-physical BLDC motor model is developed to study the practical implementation issues of the dq-coordinate control strategy, such as the initialization and rotor angle transducer resolution. This model can also be beneficial during first stage development in automotive BLDC motor applications.
Resumo:
The key to reducing cost of electric vehicles is integration. All too often systems such as the motor, motor controller, batteries and vehicle chassis/body are considered as separate problems. The truth is that a lot of trade-offs can be made between these systems, causing an overall improvement in many areas including total cost. Motor controller and battery cost have a relatively simple relationship; the less energy lost in the motor controller the less energy that has to be carried in the batteries, hence the lower the battery cost. A motor controller’s cost is primarily influenced by the cost of the switches. This paper will therefore present a method of assessing the optimal switch selection on the premise that the optimal switch is the one that produces the lowest system cost, where system cost is the cost of batteries + switches.
Resumo:
Desde meados do século XX os avanços na indústria automóvel trazem a associação da eletrónica sendo esta cada vez mais necessária. Com este trabalho pretende-se construir um computador de bordo de um veículo elétrico dando continuação a uma dissertação anterior, que consistiu em um Controlador de Motor de carro elétrico com capacidade de travagem regenerativa. Este Computador deve ser de baixo custo e é destinado à instrumentação, apresentação de balanços energéticos e funções básicas de diagnóstico do estado do veículo. Foi igualmente um objetivo desenvolver uma Interface a partir de um LCD para este Computador de Bordo. No modelo de Controlador de Motor disponível foram aplicadas alterações e adições na instrumentação de forma a conseguir um diagnóstico do veículo mais preciso e extenso. Para o computador ter conhecimento do consumo e outros parâmetros relacionados com o motor e respetivo Controlador, foi necessário estabelecer uma comunicação entre ambas unidades. Antes de se implementar um protocolo de comunicação realizou-se uma pesquisa por protocolos usados na indústria automóvel, com o intuito de saber qual o mais apropriado para o presente trabalho. A tarefa seguinte consistiu em uma pesquisa por hardware com o qual desenvolver o Computador e sua Interface. Os balanços energéticos implicaram o desenvolvimento de métodos de cálculo, efetuados com os parâmetros transmitidos pelo Controlador de Motor. No final da dissertação demonstra-se todas as funcionalidades do Computador de Bordo desenvolvido e como este é utilizado.
Resumo:
This work presents the development of a prototype of an intelligent active orthosis for lower limbs whit an electronic embedded system. The proposed orthosis is an orthopedical device with the main objective of providing walking capacity to people with partial or total loss of lower limbs movements. In order to design the kinematics, dynamics and the mechanical characteristics of the prototype, the biomechanics of the human body was analized. The orthosis was projected to reproduce some of the movements of the human gait as walking in straight forward, sit down, get up, arise and go down steps. The joints of the orthosis are controlled by DC motors equipped with mechanical reductions, whose purpose is to reduce rotational speed and increase the torque, thus generating smooth movements. The electronic embedded system is composed of two motor controller boards with two channels that communicate with a embedded PC, position sensors and limit switches. The gait movements of the orthosis will be controlled by high level commands from a human-machine interface. The embedded electronic system interprets the high level commands, generates the angular references for the joints of the orthosis, controls and drives the actuators in order to execute the desired movements of the user
Resumo:
A negative input-resistance compensator is designed to stabilize a power electronic brushless dc motor drive with constant power-load characteristics. The strategy is to feed a portion of the changes in the dc-link voltage into the current control loop to modify the system input impedance in the midfrequency range and thereby to damp the input filter. The design process of the compensator and the selection of parameters are described. The impact of the compensator is examined on the motor-controller performance, and finally, the effectiveness of the controller is verified by simulation and experimental testing.
Resumo:
This report presents a new way of control engineering. Dc motor speed controlled by three controllers PID, pole placement and Fuzzy controller and discusses the advantages and disadvantages of each controller for different conditions under loaded and unloaded scenarios using software Matlab. The brushless series wound Dc motor is very popular in industrial application and control systems because of the high torque density, high efficiency and small size. First suitable equations are developed for DC motor. PID controller is developed and tuned in order to get faster step response. The simulation results of PID controller provide very good results and the controller is further tuned in order to decrease its overshoot error which is common in PID controllers. Further it is purposed that in industrial environment these controllers are better than others controllers as PID controllers are easy to tuned and cheap. Pole placement controller is the best example of control engineering. An addition of integrator reduced the noise disturbances in pole placement controller and this makes it a good choice for industrial applications. The fuzzy controller is introduce with a DC chopper to make the DC motor speed control smooth and almost no steady state error is observed. Another advantage is achieved in fuzzy controller that the simulations of three different controllers are compared and concluded from the results that Fuzzy controller outperforms to PID controller in terms of steady state error and smooth step response. While Pole placement controller have no comparison in terms of controls because designer can change the step response according to nature of control systems, so this controller provide wide range of control over a system. Poles location change the step response in a sense that if poles are near to origin then step response of motor is fast. Finally a GUI of these three controllers are developed which allow the user to select any controller and change its parameters according to the situation.
Comparison of causality analysis on simultaneously measured fMRI and NIRS signals during motor tasks