955 resultados para mosquito-borne
Resumo:
Mathematical models of mosquito-borne pathogen transmission originated in the early twentieth century to provide insights into how to most effectively combat malaria. The foundations of the Ross–Macdonald theory were established by 1970. Since then, there has been a growing interest in reducing the public health burden of mosquito-borne pathogens and an expanding use of models to guide their control. To assess how theory has changed to confront evolving public health challenges, we compiled a bibliography of 325 publications from 1970 through 2010 that included at least one mathematical model of mosquito-borne pathogen transmission and then used a 79-part questionnaire to classify each of 388 associated models according to its biological assumptions. As a composite measure to interpret the multidimensional results of our survey, we assigned a numerical value to each model that measured its similarity to 15 core assumptions of the Ross–Macdonald model. Although the analysis illustrated a growing acknowledgement of geographical, ecological and epidemiological complexities in modelling transmission, most models during the past 40 years closely resemble the Ross–Macdonald model. Modern theory would benefit from an expansion around the concepts of heterogeneous mosquito biting, poorly mixed mosquito-host encounters, spatial heterogeneity and temporal variation in the transmission process.
Resumo:
Mosquito-borne diseases pose some of the greatest challenges in public health, especially in tropical and sub-tropical regions of theworld. Efforts to control these diseases have been underpinned by a theoretical framework developed for malaria by Ross and Macdonald, including models, metrics for measuring transmission, and theory of control that identifies key vulnerabilities in the transmission cycle. That framework, especially Macdonald’s formula for R0 and its entomological derivative, vectorial capacity, are nowused to study dynamics and design interventions for many mosquito-borne diseases. A systematic review of 388 models published between 1970 and 2010 found that the vast majority adopted the Ross–Macdonald assumption of homogeneous transmission in a well-mixed population. Studies comparing models and data question these assumptions and point to the capacity to model heterogeneous, focal transmission as the most important but relatively unexplored component in current theory. Fine-scale heterogeneity causes transmission dynamics to be nonlinear, and poses problems for modeling, epidemiology and measurement. Novel mathematical approaches show how heterogeneity arises from the biology and the landscape on which the processes of mosquito biting and pathogen transmission unfold. Emerging theory focuses attention on the ecological and social context formosquito blood feeding, themovement of both hosts and mosquitoes, and the relevant spatial scales for measuring transmission and for modeling dynamics and control.
Resumo:
The control of the spread of dengue fever by introduction of the intracellular parasitic bacterium Wolbachia in populations of the vector Aedes aegypti, is presently one of the most promising tools for eliminating dengue, in the absence of an efficient vaccine. The success of this operation requires locally careful planning to determine the adequate number of mosquitoes carrying the Wolbachia parasite that need to be introduced into the natural population. The latter are expected to eventually replace the Wolbachia-free population and guarantee permanent protection against the transmission of dengue to human. In this paper, we propose and analyze a model describing the fundamental aspects of the competition between mosquitoes carrying Wolbachia and mosquitoes free of the parasite. We then introduce a simple feedback control law to synthesize an introduction protocol, and prove that the population is guaranteed to converge to a stable equilibrium where the totality of mosquitoes carry Wolbachia. The techniques are based on the theory of monotone control systems, as developed after Angeli and Sontag. Due to bistability, the considered input-output system has multivalued static characteristics, but the existing results are unable to prove almost-global stabilization, and ad hoc analysis has to be conducted.
Resumo:
"P.O.#531444"--Colophon.
Resumo:
At least 61 different species of mosquitoes exist in South Carolina. Mosquitoes are pests that can cause itchy bites, but they can also cause serious health issues. Mosquitoes can carry harmful viruses and parasites that infect millions of people worldwide each year. Mosquito-borne diseases can cause brain inflammation (or encephalitis), birth defects, internal bleeding, complications from parasites and even death in some cases.
Resumo:
This brochure, printed in English and Spanish, shows ways of preventing mosquito bites.
Resumo:
This study examined the distribution of major mosquito species and their roles in the transmission of Ross River virus (RRV) infection for coastline and inland areas in Brisbane, Australia (27°28′ S, 153°2′ E). We obtained data on the monthly counts of RRV cases in Brisbane between November 1998 and December 2001 by statistical local areas from the Queensland Department of Health and the monthly mosquito abundance from the Brisbane City Council. Correlation analysis was used to assess the pairwise relationships between mosquito density and the incidence of RRV disease. This study showed that the mosquito abundance of Aedes vigilax (Skuse), Culex annulirostris (Skuse), and Aedes vittiger (Skuse) were significantly associated with the monthly incidence of RRV in the coastline area, whereas Aedes vigilax, Culex annulirostris, and Aedes notoscriptus (Skuse) were significantly associated with the monthly incidence of RRV in the inland area. The results of the classification and regression tree (CART) analysis show that both occurrence and incidence of RRV were influenced by interactions between species in both coastal and inland regions. We found that there was an 89% chance for an occurrence of RRV if the abundance of Ae. vigifax was between 64 and 90 in the coastline region. There was an 80% chance for an occurrence of RRV if the density of Cx. annulirostris was between 53 and 74 in the inland area. The results of this study may have applications as a decision support tool in planning disease control of RRV and other mosquito-borne diseases.
Resumo:
The goal ofthis literature review is to inform the reader on several aspects of West Nile Virus (WNV) transmission by its mosquito vector, Culex pipiens and to elucidate how Cx. pipiens and WNV are intertwined. The first few sections of the literature review describe the life cycle and blood feeding behaviours ofmosquitoes so that baseline data ofmosquito biology are established. In addition to explaining how and why a mosquito blood feeds, the section on "Blood Meal Analysis" describes the different methods for determining the vertebrate source of mosquito blood meals and a brief history of these testing methods. Since this thesis looks at the feeding behaviour of Cx. pipiens, it is important to know how to determine what they are feeding upon. Discussion on other mosquito-borne diseases related to WNV gives a broader perspective to the thesis, and examines other diseases that have occurred in Ontario in the past. This is followed by background information on WNV and theories on how this virus came to North America and how it relates to Cx. pipiens. The final sections discuss Cx. pipiens and give background information to how this species of mosquito exists and behaves within North America.
Resumo:
We provide experimental evidence of a replication enhancer element (REE) within the capsid gene of tick-borne encephalitis virus (TBEV, genus Flavivirus). Thermodynamic and phylogenetic analyses predicted that the REE folds as a long stable stem–loop (designated SL6), conserved among all tick-borne flaviviruses (TBFV). Homologous sequences and potential base pairing were found in the corresponding regions of mosquito-borne flaviviruses, but not in more genetically distant flaviviruses. To investigate the role of SL6, nucleotide substitutions were introduced which changed a conserved hexanucleotide motif, the conformation of the terminal loop and the base-paired dsRNA stacking. Substitutions were made within a TBEV reverse genetic system and recovered mutants were compared for plaque morphology, single-step replication kinetics and cytopathic effect. The greatest phenotypic changes were observed in mutants with a destabilized stem. Point mutations in the conserved hexanucleotide motif of the terminal loop caused moderate virus attenuation. However, all mutants eventually reached the titre of wild-type virus late post-infection. Thus, although not essential for growth in tissue culture, the SL6 REE acts to up-regulate virus replication. We hypothesize that this modulatory role may be important for TBEV survival in nature, where the virus circulates by non-viraemic transmission between infected and non-infected ticks, during co-feeding on local rodents.
Resumo:
Dirofilaria immitis (Leidy, 1856), an agent of heartworm disease, is an important parasite from both the veterinary standpoint and as a model to study human filariasis. It is a mosquito-borne filarial nematode which inhabits the right ventricle and pulmonary arteries of dogs. D. immitis is an important disease agent on Madeira Island with about 30% of dogs testing positive for this worm. Nevertheless, the vectors of this parasite in Madeira have never been studied, nor has the interaction between pathogen and vector, or the environmental variables that might influence heartworm transmission. Innate susceptibility to infection is only one component of vector competence, and field isolation of naturally infected mosquitoes has shown the capability of D. immitis to exploit a great diversity of vector species under natural conditions. The purpose of this work was to determine which mosquitoes are vectors of heartworm disease, the relation between population density and environment, and the association between immune response of the vector to the filarial parasite. Seasonal abundance of Culex theileri and Culex pipiens molestus was studied. Correlation and canonical correspondence analysis were performed using abundance data of these two species with selected weather variables, including mean temperature, relative humidity and accumulated precipitation. The most important factor determining Cx. theileri abundance was accumulated precipitation, while Cx. pipiens molestus abundance did not have any relationship with weather variables. Field studies were performed to verify whether Cx. theileri Theobald functions as a natural vector of D. immitis on Madeira Island, Portugal. Cx. theileri tested positive for D. immitis for the first time. The same study was made regarding Cx. p. molestus. Two abnormal L2 stage filarial worms were found in Malpighian tubules in field caught Cx. p. molestus. In the laboratory, two strains of Cx. p. molestus were studied for their susceptibility to D. immitis. None presented infective-stage larvae. Finally, because Cx. p. molestus is an autogenous mosquito, we evaluated the reproductive costs when this mosquito mounts an immune response against D. immitis in the absence of a blood meal. This mosquito showed an active immune response when inoculated intrathoracically with microfilariae (mf) of the heartworm. The ovaries from mosquitoes undergoing melanotic encapsulation developed more eggs than those which could not melanize the mf. This fact is contradictory with some previous studies of reproductive costs in Armigeres subalbatus and Ochlerotatus trivittatus, and it was the first time that an autogenous mosquito was used to study this subject.
Resumo:
Pós-graduação em Biometria - IBB
Resumo:
The spatial heterogeneity in the risk of Ross River virus (family Togaviridae, genus Alphavirus, RRV) disease, the most common mosquito-borne disease in Australia, was examined in Redland Shire in southern Queensland, Australia. Disease cases, complaints from residents of intense mosquito biting exposure, and human population data were mapped using a geographic information system. Surface maps of RRV disease age-sex standardized morbidity ratios and mosquito biting complaint morbidity ratios were created. To determine whether there was significant spatial variation in disease and complaint patterns, a spatial scan analysis method was used to test whether the number of cases and complaints was distributed according to underlying population at risk. Several noncontiguous areas in proximity to productive saline water habitats of Aedes vigilax (Skuse), a recognized vector of RRV, had higher than expected numbers of RRV disease cases and complaints. Disease rates in human populations in areas which had high numbers of adult Ae. vigilax in carbon dioxide- and octenol-baited light traps were up to 2.9 times those in areas that rarely had high numbers of mosquitoes. It was estimated that targeted control of adult Ae. vigilax in these high-risk areas could potentially reduce the RRV disease incidence by an average of 13.6%. Spatial correlation was found between RRV disease risk and complaints from residents of mosquito biting. Based on historical patterns of RRV transmission throughout Redland Shire and estimated future human population growth in areas with higher than average RRV disease incidence, it was estimated that RRV incidence rates will increase by 8% between 2001 and 2021. The use of arbitrary administrative areas that ranged in size from 4.6 to 318.3 km2, has the potential to mask any small scale heterogeneity in disease patterns. With the availability of georeferenced data sets and high-resolution imagery, it is becoming more feasible to undertake spatial analyses at relatively small scales.
Resumo:
The importance and risk of emerging mosquito borne diseases is going to increase in the European temperate areas due to climate change. The present and upcoming climates of Transdanubia seem to be suitable for the main vector of Chikungunya virus, the Asian tiger mosquito, Aedes albopictus Skuse (syn. Stegomyia albopicta). West Nile fever is recently endemic in Hungary. We used climate envelope modeling to predict the recent and future potential distribution/occurrence areas of the vector and the disease. We found that climate can be sufficient to explain the recently observed area of A. albopictus, while in the case of West Nile fever, the migration routes of reservoir birds, the run of the floodplains, and the position of lakes are also important determinants of the observed occurrence.
Resumo:
This checklist is a tool to help local governments prepare for mosquito season and potential mosquito-borne disease outbreaks. It contains recommended items to be considered as part of a Zika readiness plan.