940 resultados para mosquito larval habitats
Resumo:
The aims of this study were to characterise the ground-level larval habitats of the mosquito Culex quinquefasciatus, to determine the relationships between habitat characteristics and larval abundance and to examine seasonal larval-stage variations in Córdoba city. Every two weeks for two years, 15 larval habitats (natural and artificial water bodies, including shallow wells, drains, retention ponds, canals and ditches) were visited and sampled for larval mosquitoes. Data regarding the water depth, temperature and pH, permanence, the presence of aquatic vegetation and the density of collected mosquito larvae were recorded. Data on the average air temperatures and accumulated precipitation during the 15 days prior to each sampling date were also obtained. Cx. quinquefasciatus larvae were collected throughout the study period and were generally most abundant in the summer season. Generalised linear mixed models indicated the average air temperature and presence of dicotyledonous aquatic vegetation as variables that served as important predictors of larval densities. Additionally, permanent breeding sites supported high larval densities. In Córdoba city and possibly in other highly populated cities at the same latitude with the same environmental conditions, control programs should focus on permanent larval habitats with aquatic vegetation during the early spring, when the Cx. quinquefasciatus population begins to increase.
Resumo:
The object of the present work was to identify the larval habitats of Culex eduardoi and to determine the microenvironmental conditions related to their presence in different artificial freshwater environments (temporary, semi-permanent, irrigation ditches, and drainage ditches) in tillable areas of Chubut Province, Argentina. This report represents the first record of Cx. eduardoi from this Province and extends its range to latitude 45°S. Immature stages of Cx. eduardoi were found in 8 out of 109 (7.3 %) freshwater habitats and were significantly more prevalent in semi-permanent water bodies. Positive sites had significantly larger surface areas and more vegetation cover than negative sites.
Resumo:
Proceedings of the 11th Australasian Remote Sensing and Photogrammetry Conference
Resumo:
The proliferation of artificial container habitats in urban areas has benefitted urban adaptable mosquito species globally. In areas where mosquitoes transmit viruses and parasites, it can promote vector population productivity and fuel mosquito-borne disease outbreaks. In Britain, storage of water in garden water butts is increasing, potentially expanding mosquito larval habitats and influencing population dynamics and mosquito-human contact. Here we show that the community composition, abundance and phenology of mosquitoes breeding in experimental water butt containers were influenced by urbanisation. Mosquitoes in urban containers were less species-rich but present in significantly higher densities (100.4±21.3) per container than those in rural containers (77.7±15.1). Urban containers were dominated by Culex pipiens (a potential vector of West Nile Virus [WNV]) and appear to be increasingly exploited by Anopheles plumbeus (a human-biting potential WNV and malaria vector). Culex phenology was influenced by urban land use type, with peaks in larval abundances occurring earlier in urban than rural containers. Among other factors, this was associated with an urban heat island effect which raised urban air and water temperatures by 0.9°C and 1.2°C respectively. Further increases in domestic water storage, particularly in urban areas, in combination with climate changes will likely alter mosquito population dynamics in the UK.
Resumo:
To classify mosquito species based on common features of their habitats, samples were obtained fortnightly between June 2001-October 2003 in the subtropical province of Chaco, Argentina. Data on the type of larval habitat, nature of the habitat (artificial or natural), size, depth, location related to sunlight, distance to the neighbouring houses, type of substrate, organic material, vegetation and algae type and their presence were collected. Data on the permanence, temperature, pH, turbidity, colour, odour and movement of the larval habitat's water were also collected. From the cluster analysis, three groups of species associated by their degree of habitat similarity were obtained and are listed below. Group 1 consisted of Aedes aegypti. Group 2 consisted of Culex imitator, Culex davisi, Wyeomyia muehlensi and Toxorhynchites haemorrhoidalis separatus. Within group 3, two subgroups are distinguished: A (Psorophora ferox, Psorophora cyanescens, Psorophora varinervis, Psorophora confinnis, Psorophora cingulata, Ochlerotatus hastatus-oligopistus, Ochlerotatus serratus, Ochlerotatus scapularis, Culex intrincatus, Culex quinquefasciatus, Culex pilosus, Ochlerotatus albifasciatus, Culex bidens) and B (Culex maxi, Culex eduardoi, Culex chidesteri, Uranotaenia lowii, Uranotaenia pulcherrima, Anopheles neomaculipalpus, Anopheles triannulatus, Anopheles albitarsis, Uranotaenia apicalis, Mansonia humeralis and Aedeomyia squamipennis). Principal component analysis indicates that the size of the larval habitats and the presence of aquatic vegetation are the main characteristics that explain the variation among different species. In contrast, water permanence is second in importance. Water temperature, pH and the type of larval habitat are less important in explaining the clustering of species.
Resumo:
We surveyed the larval habitats of member,, of the Anopheles punctulatus group of mosquitoes on Niolam (Lihir) Island. Papua New Guinea. Identification of this group was undertaken by polymerase chain reaction-restriction fragment length polymorphism analysis of the amplified internal transcribed spacer unit 2 of rDNA. because morphologic separation of member species is unreliable. The most widespread malaria vector species and their most common larval habitats identified to aid source-reduction programs for malaria control. The most ubiquitous species was An. punctulatus, followed by An. farauti no. 2. then An. farauti s.s. Anopheles punctulatus has increased relative to An.farauti s.l. since the start of development projects on Lihir Island. The most common larval habitats were shallow temporary pools with clay substrate and with plants or floatage. These habitats. mostly encountered alongside poorly drained roads, may be increased by development projects.
Resumo:
The principal malaria vector in the Philippines, Anopheles flavirostris (Ludlow) (Diptera: Culicidae), is regarded as 'shade-loving' for its breeding sites, i.e. larval habitats. This long-standing belief, based on circumstantial observations rather than ecological analysis, has guided larval control methods such as 'stream-clearing' or the removal of riparian vegetation, to reduce the local abundance of An. flavirostris . We measured the distribution and abundance of An. flavirostris larvae in relation to canopy vegetation cover along a stream in Quezon Province, the Philippines. Estimates of canopy openness and light measurements were obtained by an approximation method that used simplified assumptions about the sun, and by hemispherical photographs analysed using the program hemiphot(C) . The location of larvae, shade and other landscape features was incorporated into a geographical information system (GIS) analysis. Early larval instars of An. flavirostris were found to be clustered and more often present in shadier sites, whereas abundance was higher in sunnier sites. For later instars, distribution was more evenly dispersed and only weakly related to shade. The best predictor of late-instar larvae was the density of early instars. Distribution and abundance of larvae were related over time (24 days). This pattern indicates favoured areas for oviposition and adult emergence, and may be predictable. Canopy measurements by the approximation method correlated better with larval abundance than hemispherical photography, being economical and practical for field use. Whereas shade or shade-related factors apparently have effects on larval distribution of An. flavirostris , they do not explain it completely. Until more is known about the bionomics of this vector and the efficacy and environmental effects of stream-clearing, we recommend caution in the use of this larval control method.
Resumo:
Here we present the first in a series of articles about the ecology of immature stages of anophelines in the Brazilian Yanomami area. We propose a new larval habitat classification and a new larval sampling methodology. We also report some preliminary results illustrating the applicability of the methodology based on data collected in the Brazilian Amazon rainforest in a longitudinal study of two remote Yanomami communities, Parafuri and Toototobi. In these areas, we mapped and classified 112 natural breeding habitats located in low-order river systems based on their association with river flood pulses, seasonality and exposure to sun. Our classification rendered seven types of larval habitats: lakes associated with the river, which are subdivided into oxbow lakes and nonoxbow lakes, flooded areas associated with the river, flooded areas not associated with the river, rainfall pools, small forest streams, medium forest streams and rivers. The methodology for larval sampling was based on the accurate quantification of the effective breeding area, taking into account the area of the perimeter and subtypes of microenvironments present per larval habitat type using a laser range finder and a small portable inflatable boat. The new classification and new sampling methodology proposed herein may be useful in vector control programs.
Resumo:
We address the practical issue of using thermal image data without adjustment or calibration for projects which do not require actual temperatures per se. Large scale airborne scanning in the thermal band at 8.5–13 μm was obtained for a mangrove and salt marsh in subtropical eastern Australia. For open sites, the raw image values were strongly positively correlated with ground level temperatures. For sites under mangrove canopy cover, image values indicated temperatures 2–4°C lower than those measured on the ground. The raw image was useful in identifying water bodies under canopy and has the potential for locating channel lines of deeper water. This could facilitate modification to increase flushing in the system, thereby reducing mosquito larval survival.
Resumo:
Mosquito collections were made throughout the mainland of Papua New Guinea to identify the members of the Anopheles punctulatus group present and to determine their distribution. Identification was made using morphology, DNA hybridization, and polymerase chain reaction (PCR)-RFLP analysis. Nine members of the group were identified: An. farauti s.s. Laveran, An.farauti 2, An. koliensis Owen, and An. punctulatus Donitz, were common and widespread; An. farauti 4 was restricted to the north of the central ranges where it was common; An. farauti 6 was found only in the highlands above 1,000 m; and An. farauti 3, An. sp. near punctulatus and An. clowi Rozeboom & Knight were uncommon and had restricted distributions. Identification of An. koliensis and An. punctulatus using proboscis morphology was found to be unreliable wherever An. farauti 4 occurred. The distribution and dispersal of the members of the An. punctulatus group is discussed in regard to climate, larval habitats, distance from the coast, elevation, and proximity to human habitation.
Resumo:
The proliferation of Aedes aegypti, a species of mosquito that is the vector of the dengue pathogen, is being augmented by the population's lack of care in allowing the formation of larval habitats. One form of controlling dengue is the distribution of information on the mosquito to improve awareness and to provide the means necessary for the elimination of its reproductive habitats. To evaluate a teaching method concerning the vector and dengue, students from the 5th and 6th years of primary education were compared before and after didactic intervention with a group of control students. The students who received intervention were more successful in identifying the stages of the cycle, biological and morphological characteristics of the adult insect and the importance of the mosquito in health issues. The didactic intervention was successful in developing knowledge leading to increased awareness of the importance of preventative measures that should be taken against the vector and the disease.
Resumo:
Adult dry weights of laboratory-reared Anopheles darlingi were highly correlated with wing lengths, which were used to estimate size variation in natural populations of this species. Significant differences in mean wing lengths of females trapped at baits were detected among collections in the same week at one site, but not between three sites in Brazil and Boliva. Relatively higher variability of wing lengths, compared to collections of other Anopheles (Nyssorhynchus), and platykurtic size distributions in large, single-night collections suggested that An. darlingi females caught at baits emerged from heterogenous larval habitats. No relationship was detected between parous state and the body size of wild-caught females. Adult males and females of laboratory-reared An. darlingi did not differ in body size. This absence of sexual size dimorphism is rare among mosquitoes and has not been noted previously in the genus Anopheles.
Resumo:
A mosquito pathogenic strain of Bacillus sphaericus carried out the conjugal transfer of plasmid pAMß1 to other strains of its own and two other serotypes. However, it was unable to conjugate with mosquito pathogens from three other serotypes, with B. sphaericus of other DNA homology groups or with three other species of Bacillus. Conjugation frequency was highest with a strain having an altered surface layer (S layer). Conjugal transfer of pAMß1 was not detected in mosquito larval cadavers. B. sphaericus 2362 was unable to mobilize pUB110 for transfer to strains that had served as recipients of pAMß1. These observations suggest that it is unlikely that genetically engineered B. sphaericus carrying a recombinant plasmid could pass that plasmid to other bacteria
Resumo:
Spatial evaluation of Culicidae (Diptera) larvae from different breeding sites: application of a geospatial method and implications for vector control. This study investigates the spatial distribution of urban Culicidae and informs entomological monitoring of species that use artificial containers as larval habitats. Collections of mosquito larvae were conducted in the São Paulo State municipality of Santa Bárbara d' Oeste between 2004 and 2006 during house-to-house visits. A total of 1,891 samples and nine different species were sampled. Species distribution was assessed using the kriging statistical method by extrapolating municipal administrative divisions. The sampling method followed the norms of the municipal health services of the Ministry of Health and can thus be adopted by public health authorities in disease control and delimitation of risk areas. Moreover, this type of survey and analysis can be employed for entomological surveillance of urban vectors that use artificial containers as larval habitat.