997 resultados para morphological architecture


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Actinocephalus exhibits perhaps more diversity in habit than any other genus of Eriocaulaceae. This variation is largely a result of differences in the arrangement of the paraclades. Based on the analysis of stem architecture of all 25 species of Actinocephalus, the following patterns were established: (1) leaf rosette, with no elongated axis, instead the axillary paraclades originating directly from the short aerial stem, (2) rosette axis continuing into an elongated axis with spirally arranged paraclades, (3) an elongated axis originating from a rhizome, with ramified paraclades, and (4) an elongated axis originating from a short aerial stem, with paraclades arranged in a subwhorl. The elongated axis exhibits indeterminate growth only in pattern 4. Patterns 3 and 4 are found exclusively in Actinocephalus; pattern I occurs in many other genera of Eriocaulaceae, while pattern 2 is also found in Syngonanthus and Paepalanthus. Anatomically, each stem structure (i.e., paraclade, elongated axis, short aerial stem, rhizome) is thickened in a distinctive way and this can be used to distinguish them. Specifically, elongated axes and paraclades lack thickening, thickening of short aerial stems results from the primary thickening meristem and/or the secondary thickening meristem. Thickening of rhizomes results from the activity of the primary thickening meristem. (c) 2008 Elsevier GmbH. All rights reserved.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Actinocephalus exhibits perhaps more diversity in habit than any other genus of Eriocaulaceae. This variation is largely a result of differences in the arrangement of the paraclades. Based on the analysis of stem architecture of all 25 species of Actinocephalus, the following patterns were established: (1) leaf rosette, with no elongated axis, instead the axillary paraclades originating directly from the short aerial stem, (2) rosette axis continuing into an elongated axis with spirally arranged paraclades, (3) an elongated axis originating from a rhizome, with ramified paraclades, and (4) an elongated axis originating from a short aerial stem, with paraclades arranged in a subwhorl. The elongated axis exhibits indeterminate growth only in pattern 4. Patterns 3 and 4 are found exclusively in Actinocephalus; pattern I occurs in many other genera of Eriocaulaceae, while pattern 2 is also found in Syngonanthus and Paepalanthus. Anatomically, each stem structure (i.e., paraclade, elongated axis, short aerial stem, rhizome) is thickened in a distinctive way and this can be used to distinguish them. Specifically, elongated axes and paraclades lack thickening, thickening of short aerial stems results from the primary thickening meristem and/or the secondary thickening meristem. Thickening of rhizomes results from the activity of the primary thickening meristem. (c) 2008 Elsevier GmbH. All rights reserved.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Neuronal activity within the central nervous system (CNS) strictly depends on homeostasis and therefore does not tolerate uncontrolled entry of blood components. It has been generally believed that under normal conditions, the endothelial blood-brain barrier (BBB) and the epithelial blood-cerebrospinal fluid barrier (BCSFB) prevent immune cell entry into the CNS. This view has recently changed when it was realized that activated T cells are able to breach the BBB and the BCSFB to perform immune surveillance of the CNS. Here we propose that the immune privilege of the CNS is established by the specific morphological architecture of its borders resembling that of a medieval castle. The BBB and the BCSFB serve as the outer walls of the castle, which can be breached by activated immune cells serving as messengers for outside dangers. Having crossed the BBB or the BCSFB they reach the castle moat, namely the cerebrospinal fluid (CSF)-drained leptomeningeal and perivascular spaces of the CNS. Next to the CNS parenchyma, the castle moat is bordered by a second wall, the glia limitans, composed of astrocytic foot processes and a parenchymal basement membrane. Inside the castle, that is the CNS parenchyma proper, the royal family of sensitive neurons resides with their servants, the glial cells. Within the CSF-drained castle moat, macrophages serve as guards collecting all the information from within the castle, which they can present to the immune-surveying T cells. If in their communication with the castle moat macrophages, T cells recognize their specific antigen and see that the royal family is in danger, they will become activated and by opening doors in the outer wall of the castle allow the entry of additional immune cells into the castle moat. From there, immune cells may breach the inner castle wall with the aim to defend the castle inhabitants by eliminating the invading enemy. If the immune response by unknown mechanisms turns against self, that is the castle inhabitants, this may allow for continuous entry of immune cells into the castle and lead to the death of the castle inhabitants, and finally members of the royal family, the neurons. This review will summarize the molecular traffic signals known to allow immune cells to breach the outer and inner walls of the CNS castle moat and will highlight the importance of the CSF-drained castle moat in maintaining immune surveillance and in mounting immune responses in the CNS.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Neogenin, a close relative of the axon guidance receptor DCC, has been shown to be a receptor for members of the Netrin and Repulsive Guidance Molecule families. Recent studies have begun to uncover a role for Neogenin in organogenesis. Here we examine the localization of Neogenin protein in the developing mouse embryo (embryonic day 14.5) when organogenesis is progressing rapidly. We observe that Neogenin protein is restricted to distinct tissue layers within a given organ. In some embryonic epithelia such as the gut and pancreas, Neogenin protein is predominantly polarized to the basal surfaces of the epithelial cells. In contrast, Neogenin is restricted to mesenchymal cells within the lung and kidney. Neogenin is also seen in differentiating skeletal muscle and condensing cartilage throughout the embryo, and in the trigeminal and dorsal root ganglia of the peripheral nervous system. This study supports the emerging role for Neogenin as a key receptor in the establishment of the morphological architecture in many developing organ systems.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

The influence of the architecture of the Byzantine capital spread to the Mediterranean provinces with travelling masters and architects. In this study the architecture of the Constantinopolitan School has been detected on the basis of the typology of churches, completed by certain morphological aspects when necessary. The impact of the Constantinopolitan workshops appears to have been more important than previously realized. This research revealed that the Constantinopolitan composite domed inscribed-cross type or cross-in-square spread everywhere to the Balkans and it was assumed soon by the local schools of architecture. In addition, two novel variants were invented on the basis of this model: the semi-composite type and the so-called Athonite type. In the latter variant lateral conches, choroi, were added for liturgical reasons. Instead, the origin of the domed ambulatory church was partly provincial. One result of this study is that the origin of the Middle Byzantine domed octagonal types was traced to Constantinople. This is attested on the basis of the archaeological evidence. Also some other architectural elements that have not been preserved in the destroyed capital have survived at the provincial level: the domed hexagonal type, the multi-domed superstructure, the pseudo-octagon and the narthex known as the lite. The Constantinopolitan architecture during the period in question was based on the Early Christian and Late Antique forms, practices and innovations and this also emerges at the provincial level.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

• Premise of the study: Species in the aquatic genus Nymphoides have inflorescences that appear to arise from the petioles of floating leaves. The inflorescence-floating leaf complex can produce vegetative propagules and/or additional inflorescences and leaves. We analyzed the morphology of N. aquatica to determine how this complex relates to whole plant architecture and whether whole plant growth is sympodial or monopodial. • Methods: We used dissections, measurements, and microscopic observations of field-collected plants and plants cultivated for 2 years in outdoor tanks in south Florida, USA. • Key results: Nymphoides aquatica had a submerged plagiotropic rhizome that produced floating leaves in an alternate/spiral phyllotaxy. Rhizomes were composed of successive sympodial units that varied in the number of leaves produced before the apex terminated. The basic sympodial unit had a prophyll that subtended a renewal-shoot bud, a short-petioled leaf (SPL) with floating lamina, and an inflorescence; the SPL axillary bud expanded as a vegetative propagule. Plants produced either successive basic sympodial units or expanded sympodia that intercalated long-petioled leaves between the prophyll and the SPL. • Conclusions: Nymphoides aquatica grows sympodially, forming a rhizome composed of successive basic sympodia and expanded sympodial units. Variations on these types of sympodial growth help explain the branching patterns and leaf morphologies described for other Nymphoides species. Monitoring how these two sympodial phases are affected by water depth provides an ecologically meaningful way to assess N. aquatica’s responses to altered hydrology.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Whereas many good examples can be found of the study of urban morphology informing the design of new residential areas in Europe, it is much more difficult to find examples relating to other land uses and outside of Europe. This paper addresses a particular issue, the control and coordination of large and complex development schemes within cities, and, in doing so, considers commercial and mixed-use schemes outside of Europe. It is argued that urban morphology has much to offer for both the design of such development and its implementation over time. Firstly, lessons are drawn from the work of Krier and Rossi in Berlin, the form-based guidance developed in Chelmsford, UK, and the redesign and coordination of the Melrose Arch project in Johannesburg, SA. A recent development at Boggo Road in Brisbane, Australia, is then subjected to a more detailed examination. It is argued that the scheme has been unsatisfactory in terms of both design and implementation. An alternative framework based on historical morphological studies is proposed that would overcome these deficiencies. It is proposed that this points the way to a general approach that could be incorporated within the planning process internationally.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The importance of design practice informed by urban morphology has led to intensification in interest, signalled by the formation of the ISUF Research and Practice Task Force and voiced through several recent academic publications cognisant of this current debate, this paper reports on a recent urban design workshop at which morphology was set as one of the key themes. Initially planned to be programmed as a augmented concurrent event to the 2013 20th ISUF conference held in Brisbane, the two day Bridge to Bridge: Ridge to Ridge urban design workshop nevertheless took place the following month, and involved over one hundred design professionals and academics. The workshop sought to develop several key urban design principles and recommendations addressing a major government development proposal sited in the most important heritage precinct of the city. The paper will focus specifically on one of the nine groups, in which the design proposal was purposefully guided by morphological input. The discussion will examine the design outcomes and illicit review and feedback from participants, shedding critical light on the issues that arise from such a design approach.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Morphological control of nanomaterials is of great interest due to their size and shape-dependent chemical and physical properties and very important applications in many fields such as biomedicine, sensors, electronics and others. In this paper, we reported a simple strategy for synthesizing gold nanowire assembling architecture at room temperature. It is found that two important factors, the proper volume ratio of ethanol to water and poly(vinyl pyrrolidone) (PVP), will play important roles in synthesizing flower-like short gold nanowire assembling spheres. Furthermore, the obtained flower-like gold assembling spheres with high surface-to-volume ratio have been employed as enhancing materials for electrochemical sensing H2O2. The present electrochemical sensing platform exhibited good electrocatalytic activity towards the reduction of H2O2. The detection limit for H2O2 was found to be 1.2 mu M, which was lower than certain enzyme-based biosensors.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The taxonomic assignment of Prorocentrum species is based on morphological characteristics; however, morphological variability has been found for several taxa isolated from different geographical regions. In this study, we evaluated species boundaries of Prorocentrum hoffmannianum and Prorocentrum belizeanum based on morphological and molecular data. A detailed morphological analysis was done, concentrating on the periflagellar architecture. Molecular analyses were performed on partial Small Sub-Unit (SSU) rDNA, partial Large Sub-Unit (LSU) rDNA, complete Internal Transcribed Spacer Regions (ITS1-5.8S-ITS2), and partial cytochrome b (cob) sequences. We concatenated the SSU-ITS-LSU fragments and constructed a phylogenetic tree using Bayesian Inference (BI) and maximum likelihood (ML) methods. Morphological analyses indicated that the main characters, such as cell size and number of depressions per valve, normally used to distinguish P. hoffmannianum from P. belizeanum, overlapped. No clear differences were found in the periflagellar area architecture. Prorocentrum hoffmannianum and P. belizeanum were a highly supported monophyletic clade separated into three subclades, which broadly corresponded to the sample collection regions. Subtle morphological overlaps found in cell shape, size, and ornamentation lead us to conclude that P. hoffmanianum and P. belizeanum might be considered conspecific. The molecular data analyses did not separate P. hoffmannianum and P. belizeanum into two morphospecies, and thus, we considered them to be the P. hoffmannianum species complex because their clades are separated by their geographic origin. These geographic and genetically distinct clades could be referred to as ribotypes: (A) Belize, (B) Florida-Cuba, (C1) India, and (C2) Australia.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Development of cribriform morphology (CM) heralds malignant change in human colon but lack of mechanistic understanding hampers preventive therapy. This study investigated CM pathobiology in three-dimensional (3D) Caco-2 culture models of colorectal glandular architecture, assessed translational relevance and tested effects of 1,25(OH)2D3, the active form of vitamin D. CM evolution was driven by oncogenic perturbation of the apical polarity (AP) complex comprising PTEN, CDC42 and PRKCZ (phosphatase and tensin homolog, cell division cycle 42 and protein kinase C zeta). Suppression of AP genes initiated a spatiotemporal cascade of mitotic spindle misorientation, apical membrane misalignment and aberrant epithelial configuration. Collectively, these events promoted “Swiss cheese-like” cribriform morphology (CM) comprising multiple abnormal “back to back” lumens surrounded by atypical stratified epithelium, in 3D colorectal gland models. Intestinal cancer driven purely by PTEN-deficiency in transgenic mice developed CM and in human CRC, CM associated with PTEN and PRKCZ readouts. Treatment of PTEN-deficient 3D cultures with 1,25(OH)2D3 upregulated PTEN, rapidly activated CDC42 and PRKCZ, corrected mitotic spindle alignment and suppressed CM development. Conversely, mutationally-activated KRAS blocked 1,25(OH)2D3 rescue of glandular architecture. We conclude that 1,25(OH)2D3 upregulates AP signalling to reverse CM in a KRAS wild type (wt), clinically predictive CRC model system. Vitamin D could be developed as therapy to suppress inception or progression of a subset of colorectal tumors.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Cycliophora é um filo animal descrito recentemente que acomoda, apenas, duas espécies: Symbion pandora Funch e Kristensen, 1995 e S. americanus Obst, Funch e Kristensen, 2006. Este filo é caracterizado por um ciclo de vida assaz complexo, cuja posição filogenética tem sido debatida desde a sua descoberta. Esta dissertação visa aprofundar o conhecimento geral existente acerca destes enigmáticos e pouco explorados metazoários. Assim, vários aspectos da morfologia e ecologia de ciclióforos foram estudados através de observações in vivo, técnicas de microscopia e reconstrução tridimensional. A mioanatomia de várias fases do ciclo de vida é descrita para S. pandora e S. americanus. Os nossos resultados revelam uma similaridade contundente entre a musculatura das duas espécies. A mioanatomia geral de Symbion é, ainda, comparada à de outros metazoários. A expressão de algumas substâncias imunorreactivas, como são exemplo a serotonina e as sinapsinas, é investigada em várias formas do ciclo de vida. Quando comparados com outros representantes de Spiralia, conclui-se que a neuroanatomia geral dos ciclióforos se assemelha mais às formas larvares do que aos adultos. Apesar de possuírem um plano corporal sofisticado, com extensas áreas ciliadas e uma mioanatomia complexa, descobrimos que o macho de ambas as espécies Symbion é composto por apenas algumas dezenas de células. Baseando-nos nestas observações, inferimos que a complexidade dos metazoários não se relaciona com o tamanho corporal nem com o número de células de um organismo. Estudos sobre a ultra-estrutura da fêmea revelaram, entre outras estruturas, um putativo poro genital, extensões citoplasmáticas do oócito e glândulas posteriores. Morfologia e implicações funcionais destas estruturas são aqui discutidas. A anatomia do protonefrídeo da larva cordóide é descrita. A arquitectura deste órgão diverge daquela presente noutros representantes de Nephrozoa, particularmente ao nível da área de filtração da célula terminal. As nossas observações são discutidas em termos filogenéticos. A maturação sexual em ciclióforos é investigada. Os nossos resultados sugerem que a transição de reprodução assexual a sexual se relacione com a idade da forma séssil, a “feeding stage”. A presença da larva Prometeus assente no tronco desta também poderá influenciar o processo, embora mais estudos sejam desejáveis para o comprovar. Os nossos resultados são discutidos integrativa e comparativamente com o conhecimento prévio sobre Cycliophora. A cumulação deste conhecimento será essencial para a compreensão da evolução e filogenia deste enigmático filo.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Morphological integration refers to the modular structuring of inter-trait relationships in an organism, which could bias the direction and rate of morphological change, either constraining or facilitating evolution along certain dimensions of the morphospace. Therefore, the description of patterns and magnitudes of morphological integration and the analysis of their evolutionary consequences are central to understand the evolution of complex traits. Here we analyze morphological integration in the skull of several mammalian orders, addressing the following questions: are there common patterns of inter-trait relationships? Are these patterns compatible with hypotheses based on shared development and function? Do morphological integration patterns and magnitudes vary in the same way across groups? We digitized more than 3,500 specimens spanning 15 mammalian orders, estimated the correspondent pooled within-group correlation and variance/covariance matrices for 35 skull traits and compared those matrices among the orders. We also compared observed patterns of integration to theoretical expectations based on common development and function. Our results point to a largely shared pattern of inter-trait correlations, implying that mammalian skull diversity has been produced upon a common covariance structure that remained similar for at least 65 million years. Comparisons with a rodent genetic variance/covariance matrix suggest that this broad similarity extends also to the genetic factors underlying phenotypic variation. In contrast to the relative constancy of inter-trait correlation/covariance patterns, magnitudes varied markedly across groups. Several morphological modules hypothesized from shared development and function were detected in the mammalian taxa studied. Our data provide evidence that mammalian skull evolution can be viewed as a history of inter-module parcellation, with the modules themselves being more clearly marked in those lineages with lower overall magnitude of integration. The implication of these findings is that the main evolutionary trend in the mammalian skull was one of decreasing the constraints to evolution by promoting a more modular architecture.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The control of molecular architecture provided by the layer-by-layer (LbL) technique has led to enhanced biosensors, in which advantageous features of distinct materials can be combined. Full optimization of biosensing performance, however, is only reached if the film morphology is suitable for the principle of detection of a specific biosensor. In this paper, we report a detailed morphology analysis of LbL films made with alternating layers of single-walled carbon nanotubes (SWNTs) and polyamidoamine (PAMAM) dendrimers, which were then covered with a layer of penicillinase (PEN). An optimized performance to detect penicillin G was obtained with 6-bilayer SWNT/PAMAM LbL films deposited on p-Si-SiO(2)-Ta(2)O(5) chips, used in biosensors based on a capacitive electrolyte-insulator-semiconductor (EIS) and a light-addressable potentiometric sensor (LAPS) structure, respectively. Field-emission scanning electron microscopy (FESEM) and atomic force microscopy (AFM) images indicated that the LbL films were porous, with a large surface area due to interconnection of SWNT into PAMAM layers. This morphology was instrumental for the adsorption of a larger quantity of PEN, with the resulting LbL film being highly stable. The experiments to detect penicillin were performed with constant-capacitance (Con Cap) and constant-current (CC) measurements for EIS and LAPS sensors, respectively, which revealed an enhanced detection signal and sensitivity of ca. 100 mV/decade for the field-effect sensors modified with the PAMAM/SWNT LbL film. It is concluded that controlling film morphology is essential for an enhanced performance of biosensors, not only in terms of sensitivity but also stability and response time. (C) 2010 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim