1000 resultados para monolithic polymer


Relevância:

70.00% 70.00%

Publicador:

Resumo:

The preparation of macroporous methacrylate monolithic material with controlled pore structures can be carried out in an unstirred mould through careful and precise control of the polymerisation kinetics and parameters. Contemporary synthesis conditions of methacrylate monolithic polymers are based on existing polymerisation schemes without an in-depth understanding of the dynamics of pore structure and formation. This leads to poor performance in polymer usage thereby affecting final product recovery and purity, retention time, productivity and process economics. The unique porosity of methacrylate monolithic polymer which propels its usage in many industrial applications can be controlled easily during its preparation. Control of the kinetics of the overall process through changes in reaction time, temperature and overall composition such as cross-linker and initiator contents allow the fine tuning of the macroporous structure and provide an understanding of the mechanism of pore formation within the unstirred mould. The significant effect of temperature of the reaction kinetics serves as an effectual means to control and optimise the pore structure and allows the preparation of polymers with different pore size distributions from the same composition of the polymerisation mixture. Increasing the concentration of the cross-linking monomer affects the composition of the final monoliths and also decreases the average pore size as a result of pre-mature formation of highly cross-linked globules with a reduced propensity to coalesce. The choice and concentration of porogen solvent is also imperative. Different porogens and porogen mixtures present different pore structure output. Example, larger pores are obtained in a poor solvent due to early phase separation.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

High-throughput plasmid DNA (pDNA) manufacture is obstructed predominantly by the performance of conventional stationary phases. For this reason, the search for new materials for fast chromatographic separation of pDNA is ongoing. A poly(glycidyl methacrylate-co-ethylene glycol dimethacrylate) (GMA-EGDMA) monolithic material was synthesised via a thermal-free radical reaction, functionalised with different amino groups from urea, 2-chloro-N,N-diethylethylamine hydrochloride (DEAE-Cl) and ammonia in order to investigate their plasmid adsorption capacities. Physical characterisation of the monolithic polymer showed a macroporous polymer having a unimodal pore size distribution pivoted at 600 nm. Chromatographic characterisation of the functionalised polymers using pUC19 plasmid isolated from E. coli DH5α-pUC19 showed a maximum plasmid adsorption capacity of 18.73 mg pDNA/mL with a dissociation constant (KD) of 0.11 mg/mL for GMA-EGDMA/DEAE-Cl polymer. Studies on ligand leaching and degradation demonstrated the stability of GMA-EGDMA/DEAE-Cl after the functionalised polymers were contacted with 1.0 M NaOH, which is a model reagent for most 'cleaning in place' (CIP) systems. However, it is the economic advantage of an adsorbent material that makes it so attractive for commercial purification purposes. Economic evaluation of the performance of the functionalised polymers on the grounds of polymer cost (PC)/mg pDNA retained endorsed the suitability of GMA-EGDMA/DEAE-Cl polymer.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

Monolithic columns of capillary electrochromatography (CEC) with weak electroosmotic flow (EOF) have been prepared by in situ polymerization of butyl methacrylate and ethylene dimethacrylate, without any charged groups in the reaction mixture. The reproducibility of such columns has been proved good no matter whether they are prepared in the same batch or in different batches. In the case of BMA-EDMA monoliths, besides the traditional ternary mixture - 1-propanol, 1,4-butanediol, and water, binary porogenic solvents with only alcohols have also been adopted. Compared with ternary porogenic solvents, the design with binary ones allows for fine control of the pore diameter and the formation of the specific surface of the monolithic polymers. The composition of porogenic reagents has also been shown to have an effect on EOF in the column systems. In addition, the Joule heat effect in such columns has been studied by varying the inner diameter of columns. Through the separation of acidic compounds, monolithic columns with low EOF have shown potential in the analysis of charged samples.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

A microfabricated poly(dimethylsiloxane) (PDMS) chip containing channel filled with polymer monolith has been developed for on-chip biomolecule separation. Methacrylate monolithic polymers were prepared by photo-initiated polymerization within the channel to serve as a continuous stationary phase. The monolithic polymer was functionalized with a weak anion-exchange ligand, and key parameters affecting the binding characteristics of the system were investigated. The total binding capacity was unaffected by the flow rate of the mobile phase but varied significantly with changes in ionic strength and pH of the binding buffer. The binding capacity decreased with increasing buffer ionic strength, and this is due to the limited available binding sites for protein adsorption resulting from cationic shielding effect. Similarly, the binding capacity decreased with decreasing buffer pH towards the isoelectric point of the protein. A protein mixture, BSA and ovalbumin, was used to illustrate the capacity of the methacrylate-based microfluidic chip for rapid biomolecule separation.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Malaria is a global health problem; an effective vaccine is urgently needed. Due to the relative poverty and lack of infrastructure in malaria endemic areas, DNA-based vaccines that are stable at ambient temperatures and easy to formulate have great potential. While attention has been focused mainly on antigen selection, vector design and efficacy assessment, the development of a rapid and commercially viable process to manufacture DNA is generally overlooked. We report here a continuous purification technique employing an optimized stationary adsorbent to allow high-vaccine recovery, low-processing time, and, hence, high-productivity. A 40.0 mL monolithic stationary phase was synthesized and functionalized with amino groups from 2-Chloro-N,N- diethylethylamine hydrochloride for anion-exchange isolation of a plasmid DNA (pDNA) that encodes a malaria vaccine candidate, VR1020-PyMSP4/5. Physical characterization of the monolithic polymer showed a macroporous material with a modal pore diameter of 750 nm. The final vaccine product isolated after 3 min elution was homogeneous supercoiled plasmid with gDNA, RNA and protein levels in keeping with clinical regulatory standards. Toxicological studies of the pVR1020-PyMSP4/5 showed a minimum endotoxin level of 0.28 EU/m.g pDNA. This cost-effective technique is cGMP compatible and highly scalable for the production of DNA-based vaccines in commercial quantities, when such vaccines prove to be effective against malaria. © 2008 American Institute of Chemical Engineers.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

The extent of exothermicity associated with the construction of large-volume methacrylate monolithic columns has somewhat obstructed the realisation of large-scale rapid biomolecule purification especially for plasmid-based products which have proven to herald future trends in biotechnology. A novel synthesis technique via a heat expulsion mechanism was employed to prepare a 40 mL methacrylate monolith with a homogeneous radial pore structure along its thickness. Radial temperature gradient was recorded to be only 1.8 °C. Maximum radial temperature recorded at the centre of the monolith was 62.3 °C, which was only 2.3 °C higher than the actual polymerisation temperature. Pore characterisation of the monolithic polymer showed unimodal pore size distributions at different radial positions with an identical modal pore size of 400 nm. Chromatographic characterisation of the polymer after functionalisation with amino groups displayed a persistent dynamic binding capacity of 15.5 mg of plasmid DNA/mL. The maximum pressure drop recorded was only 0.12 MPa at a flow rate of 10 mL/min. The polymer demonstrated rapid separation ability by fractionating Escherichia coli DH5α-pUC19 clarified lysate in only 3 min after loading. The plasmid sample collected after the fast purification process was tested to be a homogeneous supercoiled plasmid with DNA electrophoresis and restriction analysis.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Liquid-filled microstructured polymer optical fibers (MPOFs) as monolithic liquid-core array fiber are proposed and prepared by injecting high-refractive-index liquid into the holes array of the MPOFs. One example for potential applications is demonstrated as a new kind of coherent imaging fiber. It provides great potential for applications in chemical sensing, biosensors, and endoscopy, particularly in bifunctional detection. (C) 2009 Optical Society of America

Relevância:

40.00% 40.00%

Publicador:

Resumo:

An iminodiacetic acid (IDA)-type adsorbent is prepared at the one end of a capillary by covalently bonding IDA to the monolithic rods of macroporous poly(glycidyl methacrylate-co-ethylene dimethacrylate). Cu(II) is later introduced to the support via the interaction with IDA. By this means, polymer monolithic immobilized metal affinity chromatography (IMAC) materials are prepared. With such a column, IMAC for on-line concentration and capillary electrophoresis (CE) for the subsequent analysis are hyphenated for the analysis of peptides and proteins. The reproducibility of such a column has been proved good with relative standard deviations (RSDs) of dead time of less than 5% for injection-to-injection and 12% for column-to-column (n = 3). Through application on the analysis of standard peptides and real protein samples, such a technique has shown promising in proteome study.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

A monolithic stationary phase was prepared via free radical co-polymerization of ethylene glycol dimethacrylate (EDMA) and glycidyl methacrylate (GMA) with pore diameter tailored specifically for plasmid binding, retention and elution. The polymer was functionalized. with 2-chloro-N,N-diethylethylamine hydrochloride (DEAE-Cl) for anion-exchange purification of plasmid DNA (pDNA) from clarified lysate obtained from E. coli DH5α-pUC19 culture in a ribonuclease/ protease-free environment. Characterization of the monolithic resin showed a porous material, with 68% of the pores existing in the matrix having diameters above 300 nm. The final product isolated from a single-stage 5 min anion-exchange purification was a pure and homogeneous supercoiled (SC) pDNA with no gDNA, RNA and protein contamination as confirmed by ethidium bromide agarose gel electrophoresis (EtBr-AGE), enzyme restriction analysis and sodium dodecyl sulfate-polyacrylamide gel electrophoresis. This non-toxic technique is cGMP compatible and highly scalable for production of pDNA on a commercial level.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

A method was presented for the determination of testosterone, methyltestosterone and progesterone in liquid cosmetics by coupling polymer monolith microextraction (PMME) to high performance liquid chromatography with UV detection. A poly (methacrylic acid-ethylene glycol dimethacrylate) monolithic capillary column was selected as the extraction medium, which showed high extraction capacity towards these compounds. To achieve optimum extraction performance, several parameters relating to PMME were investigated, including extraction flow rate and pH value, inorganic salt and organic phase concentration of the sample matrix. By simple dilution with phosphate solution and filtering, the sample solution then could be directly injected into the device for extraction. The limits of detection of testosterone, methyltestosterone and progesterone were calculated to be 2, 3, 2, 8 and 4.6 mu g/L. Good linearity was achieved in the range of 10 to 1000 mu g/L with a linear coefficient. r value above 0. 996. Excellent method reproducibility was found by intra- and inter-day precisions, yielding the relative standard deviations of < 7. 7 % and < 7. 5 %, respectively. Recovery for them in the real samples was between 83% and 119%.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

A monolithic structured polymer preform was formed by in-situ chemical polymerization of high-purity MMA monomer in a home-made mould. The conditions for fabrication of the preforms were optimized and the preform was drawn to microstructured polymer optical fibre. The optical properties of the resultant elliptical-core fibre were measured. This technique provides advantages over alternative preform fabrication methods such as drilling and capillary stacking, which are less suitable for mass production. (c) 2006 Optical Society of America.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Glycidyl methacrylate (GMA) and ethylene dimethacrylate (EDMA) were used to synthesize a monolithic capillary column containing reactive epoxy groups. Glutaraldehyde was introduced and linked to the monolith after a process of amination. An aqueous solution of commercial carrier ampholytes (CAs, Ampholine) was focused in such a polymer column. The primary amino groups of CAs reacted with glutaraldehyde along the capillary. CAs were immobilized at different positions in the column according to their isoelectric points (pl), resulting in a monolithic immobilized pH gradient (M-IPG). Isoelectric focusing (IEF) was performed without CAs in such an M-IPG column. Due to the covalent attachment of the CAs this M-IPG can be repeatedly used after its preparation. Good stability, linearity, and reproducibility were obtained.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

A method involving self-concentration, on-column enrichment and field-amplified sample stacking for on-line concentration in capillary electrochromatography with a polymer monolithic column is presented. Since monolithic columns eliminate the frit fabrication and the problems associated with frits, the experimental conditions could be more flexibly adjusted to obtain higher concentration factor in comparison with conventional particulate packed columns. With self-concentration effect, the detection sensitivity of benzene and hexylbenzene is improved by a factor of 4 and 8, respectively. With on-column enrichment and ultralong injection, improvement as high as 22 000 times in detection sensitivity of benzoin is achieved. Furthermore, a combination of the three above-mentioned methods yields up to a 24000-fold improvement in detection sensitivity for caffeine, a charged compound. Parameters affecting the efficiency of on-line concentration are investigated systematically. In addition, equations describing on-line concentration process are deduced.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

A polymer-based monolithic capillary column imprinted with 4-aminopyridine (4-AP) was prepared by a thermally-initiated polymerization process; and its performance as a capillary electrochromatographic medium was evaluated in separating 4-AP and 2-AP isomers. The effects of experimental parameters, such as pH value and ionic strength of the buffer, the acetonitrile content in the mobile phase, and the applied voltage, on the resolution of these isomers had been carefully investigated. It was found that in the retention process there were interplays of multiple mechanisms of ion-exchange, molecular imprinting, and electrophoresis. These mechanisms allowed more sophisticated control of experimental parameters in the separation of ionizable compounds.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Monolithic capillary columns for affinity chromatography were prepared by an in situ polymerization procedure using glycidyl methacrylate (GMA) as a monomer and trimethylolpropane trimethacrylate (TRIM) and ethylene dimethacrylate (EDMA) as cross-linkers, respectively. Scanning electron microscopy was applied to characterize the morphology of the end of monolithic capillary and mercury intrusion porosimetry to characterize the polymer rod prepared within the confines of a stainless steel column with 50 mm x 4.6 mm i.d. under the same polymerization condition. Obvious differences in the porous properties between the TRIM- and EDMA-based monoliths could be observed. Moreover, the mechanical stability of these two monolithic capillary columns was compared by testing the reproducibility of the column performance. The rod prepared with GMA and TRIM proved to be mechanically more stable than that prepared with GMA and EDMA. Protein A was immobilized on the monolithic rod for affinity chromatography and the experiments were performed on a capillary electrophoresis instrument, using its pressure system as the driving force. Non-specific adsorption was not observed on the TRIM-based affinity column, as proved with bovine serum albumin (BSA) as a test protein. The affinity column prepared with GMA and TRIM was then applied to determine the hIgG concentration in human serum. The correlative coefficient of the calibration curve reached 0.9942. The amount of adsorbed hIgG was unaffected by the flow rate of the loading buffer, which makes this method suitable for fast determination of biomacromolecules in microliter samples. (C) 2002 Elsevier Science B.V All rights reserved.