950 resultados para molybdenum carbonyl


Relevância:

100.00% 100.00%

Publicador:

Resumo:

The thin alumina film-supported metallic molybdenum model catalyst was prepared by thermal decomposition of MO(CO)6, and CO chemisorption on the catalyst was investigated in-situ by thermal desorption spectroscopy (TDS) and X-ray photoelectron spectroscopy (XPS). The results showed that a molybdenum-carbonyl-like species was formed on the alumina surface at low temperature by high coordination of CO with the surface metallic molybdenum nanoparticles, indicating a reversible regeneration of molybdenum carbonyl on the alumina surface. CO chemisorption on the model catalyst surface caused the Mo 3d XPS peak to shift toward higher binding energy. The formed molybdenum carbonyl species appeared at about 240 K in the TDS. The supported metallic molybdenum nanoparticles were quite different from the bulk molybdenum in chemical properties, which indicated a prominent particle-size effect of the clusters.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

MoS2 nanotube bundles along with embedded nested fullerenes were formed in a gas phase reaction of molybdenum carbonyl and H2S gas with the assistance of I2. The amorphous Mo-S-I intermediates obtained through quenching a modified MOCVD reaction in a large temperature gradient were annealed at elevated temperature in an inert atmosphere. Under the influence of the iodine the amorphous precursor formed a surface film with an enhanced mobility of the molybdenum and sulfur components. Point defects within the MoS2 layers combined with the enhanced surface diffusion lead to a scrolling of the inherently instable MoS2 lamellae.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The reactions of (amino)spirocyclotriphosphazenes, N3P3(NMe2)4(NHCH2CH2NH) (1) and N3P3(NMe2)4(NHCH2CH2CH2NH) (2) with molybdenum- and tungsten-hexacarbonyls give complexes of the type [M(CO)4(L)] (L = 1 or 2) in which the phosphazenes act as bidentate chelating ligands via one of the phosphazene ring nitrogen atoms and one of the nitrogen atoms of the diaminoalkane moiety.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Stable chromium, molybdenum, tungsten, manganese, rhenium, ruthenium, osmium, cobalt, rhodium, and iridium metal nanoparticles (MNPs) have been reproducibly obtained by facile, rapid (3 min), and energysaving 10 W microwave irradiation (MWI) under an argon atmosphere from their metal–carbonyl precursors [Mx(CO)y] in the ionic liquid (IL) 1-butyl-3-methylimidazolium tetrafluoroborate ([BMIm][BF4]). This MWI synthesis is compared to UV-photolytic (1000 W, 15 min) or conventional thermal decomposition (180–2508C, 6–12 h) of [Mx(CO)y] in ILs. The MWIobtained nanoparticles have a very small (<5 nm) and uniform size and are prepared without any additional stabilizers or capping molecules as long-term stable M-NP/IL dispersions (characterization by transmission electron microscopy (TEM), transmission electron diffraction (TED), and dynamic light scattering (DLS)). The ruthenium, rhodium, or iridium nanoparticle/IL dispersions are highly active
and easily recyclable catalysts for the biphasic liquid–liquid hydrogenation of cyclohexene to cyclohexane with activities of up to 522 (mol product)(mol Ru)1h1 and 884 (mol product)(molRh)1h1 and give almost quantitative conversion within 2 h at 10 bar H2 and 908C. Catalyst poisoning experiments with CS2 (0.05 equiv per Ru) suggest a heterogeneous surface catalysis of RuNPs.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

This research was focussed on the effects of light, solvent and substituents in the molybdenum-catalyzed oxidation of phenylmethyl sulfides with t-Bu02H and on the effect of light in the molybdenum-catalyzed epoxidation of l-octene with t-Bu02H. It was shown that the Mo(CO)6-catalyzed oxidation of phenylmethyl sulfide with t-Bu02H~ at 35°C, proceeds 278 times faster underUV light than under laboratory lighting, whereas the Mo02(acac)2-catalyzed oxidation proceeds only 1.7 times faster under UV light than under normal laboratory lighting. The difference between the activities of both catalysts was explained by the formation of the catalytically active species, Mo(VI). The formation of the Mo(VI) species, from Mo(CO)6 was observed from the IR spectrum of Mo(CO)6 in the carbonyl region. The Mo(CO)6-catalyzed epoxidation of l-octene with t-Bu02H showed that the reaction proceeded 4.6 times faster under UV light than in the dark or under normal laboratory lighting; the rates of epoxidations were found to be the same in the dark and under normal laboratory lighting. The kinetics of the epoxidations of l-octene with t-Bu02H, catalyzed by Mo02(acac)2 were found to be complicated; after fast initial rates, the epoxidation rates decreased with time. The effect of phenylmethyl sulfide on the Mo(CO)6-catalyzed epoxidation of l-octene waS studied. It was shown that instead of phenylmethyl sulfide, phenylmethyl sulfone, which formed rapidly at 85°C, lowered the reaction rate. The epoxidation of l-octene was found to be 2.5 times faster in benzene than in ethanol. The substituent effect on the Mo02(acac)2-catalyzed oxidations of p-OH, p-CHgO, P-CH3' p-H, p-Cl, p-Br, p-CHgCO, p-HCO and P-N02 substituted phenylmethyl sulfides were studied. The oxidations followed second order kinetics for each case; first order dependency on catalyst concentration was also observed in the oxidation of p-CHgOPhSMeand PhSMe. It was found that electron-donating groups on the para position of phenylmethyl sulfide increased the rate of reaction, while electronwithdrawing groups caused the reaction rate to decrease. The reaction constants 0 were determined by using 0, 0- and 0* constants. The rate effects were paralleled by the activation energies for oxidation. The decomposition of t-Bu02H in the presence of M.o (CO)6, Mo02 (acac)2 and VO(acac)2 was studied. The rates of decomposition were found to be very small compared to the oxidation rates at high concentration of catalysis. The relative rates of the Mo02(acac)2-catalyzed oxidation of p-N02PhSMe by t-Bu02H in the presence of either p-CH30PhSMe or PhSMe clearly show that PhSMe and p-CHgOPhSMe act as co-catalysts in the oxidation of p-N02PhSMe. Benzene, mesity1ene and cyclohexane were used to determine the effect of solvent in the Mo02 (acac)2 and Mo(CO)6-catalyzed oxidation of phenylmethyl sulfide. The results showed that in the absence of hydroxylic solvent, a second molecule of t-Bu02H was involved in the transition state. The complexation of the solvent with the catalyst could not be explained.The oxidations of diphenyl sulfoxide catalyzed by VO(acac)2, Mo(CO)6 and Mo02(acac)2 showed that VO(acac)2 catalyzed the oxidation faster than Mo(CO)6 and Mo02 (acac)2_ Moreover, the Mo(CO)6-catalyzed oxidation of diphenyl sulfoxide proceeded under UV light at 35°C.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

This thesis describes the synthesis, structural studies, stoichiometric and catalytic reactivity of novel Mo(IV) imido hydride complexes (Cp)(ArN)Mo(H)(PMe3) (1) and (Tp )(ArN)Mo(H)(PMe3) (2). Both 1 and 2 catalyze hydrosilylation of a variety of carbonyls. Detailed kinetic and DFT studies found that 1 reacts by an unexpected associative mechanism, which does not involve Si-H addition either to the imido group or the metal. Despite 1 being a d2 complex, its reaction with PhSiH3 proceeds via a a-bond metathesis mechanism giving the silyl derivative (Cp )(ArN)Mo(SiH2Ph)(PMe3). In the presence of BPh3 reaction of 1 with PhSiH3 results in formation of (Cp)(ArN)Mo(SiH2Ph)(H)2 and (Cp)(ArN)Mo(SiH2Ph)2(H), the first examples ofMo(VI) silyl hydrides. AI: 1 : 1 reaction between 2, PhSiD3 and carbonyl substrate established that hydrosilylation is not accompanied by deuterium incorporation into the hydride position of the catalyst, thus ruling out the conventional mechanism based on carbonyl insertion carbonyl. As 2 is nomeactive to both the silane and ketone, the only mechanistic alternative we are left with is that the metal center activates the carbonyl as a Lewis acid. The analogous nonhydride mechanism was observed for the catalysis by (ArN)Mo(H)(CI)(PMe3), (Ph3P)2(I)(O)Re(H)(OSiMe2Ph) and (PPh3CuH)6. Complex 2 also catalyzes hydroboration of carbonyls and nitriles. We report the first case of metal-catalyzed hydroboration of nitriles as well as hydroboration of carbonyls at very mild conditions. Conversion of carbonyl functions can be performed with high selectivities in the presence of nitrile groups. This thesis also reports the first case of the HlH exchange between H2 and Si-H of silanes mediated by Lewis acids such as Mo(IV) , Re(V) , Cu(I) , Zn(II) complexes, B(C6Fs)3 and BPh3.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

New Mo(II) diimine derivatives of [Mo(q (3)allyl)X(CO)(2)(CH3CN)(2)] (allyl = C3H5 and C5H5O; X = Cl, Br) were prepared, and [MO(eta(3)-C3H5)Cl(CO)(2)(BIAN)] (BIAN = 1,4-(4-chloro)phenyl-2,3-naphthalene-diazabutadiene) (7) was structurally characterized by single-crystal X-ray diffraction. This complex adopted an equatorial-axial arrangement of the bidentate ligand (axial isomer), in contrast with the precursors, found as the equatorial isomer in the solid and fluxional in solution. The new complexes of the type [Mo(eta(3)-allyl)X(CO)(2)(N-N)l (N-N is a bidentate chelating dinitrogen ligand) were tested for the catalytic epoxidation of cyclooctene using tert-butyl hydroperoxide as oxidant. All catalytic systems were 100% selective toward epoxide formation. While their turnover frequencies paralleled those of related Mo(eta) carbonyl compounds or Mo(VI) compounds bearing similar N-donor ligands, they exhibited similar olefin conversions in consecutive catalytic runs. The acetonitrile precursors were generally more active than the diimine complexes, and the chloro derivatives more active than the bromo ones. Combined vibrational and NMR spectroscopy and computational studies (DFT) were used to investigate the nature of the molybdenum species formed in the catalytic system with [Mo(eta(3)-C3H5)Cl(CO)(2){1,4-(2,6-dimethyl)phenyl-2.3-dimethyldiazabuta diene}] (4) and to propose that the resulting species may be dimeric bearing oxide bridges.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The crystal structure of the xanthine oxidase-related molybdenum-iron protein aldehyde oxido-reductase from the sulfate reducing anaerobic Gram-negative bacterium Desulfovibrio gigas (Mop) was analyzed in its desulfo-, sulfo-, oxidized, reduced, and alcohol-bound forms at 1.8-A resolution. In the sulfo-form the molybdenum molybdopterin cytosine dinucleotide cofactor has a dithiolene-bound fac-[Mo, = O, = S, ---(OH2)] substructure. Bound inhibitory isopropanol in the inner compartment of the substrate binding tunnel is a model for the Michaelis complex of the reaction with aldehydes (H-C = O,-R). The reaction is proposed to proceed by transfer of the molybdenum-bound water molecule as OH- after proton transfer to Glu-869 to the carbonyl carbon of the substrate in concert with hydride transfer to the sulfido group to generate [MoIV, = O, -SH, ---(O-C = O, -R)). Dissociation of the carboxylic acid product may be facilitated by transient binding of Glu-869 to the molybdenum. The metal-bound water is replenished from a chain of internal water molecules. A second alcohol binding site in the spacious outer compartment may cause the strong substrate inhibition observed. This compartment is the putative binding site of large inhibitors of xanthine oxidase.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The solid-state pyrolysis of organometallic derivatives of a cyclotriphosphazene is demonstrated to be a new, simple and versatile solid-state templating method for obtaining single-crystal micro- and nanocrystals of transition and valve metal oxides. The technique, when applied to Mo-containing organometallics N3P3[OC6H4CH2CN·Mo(CO)5]6 and N3P3[OC6H4CH2CN·Mo(CO)4 py]6, results in stand-alone and surface-deposited lamellar MoO3 single crystals, as determined by electron and atomic force microscopies and X-ray diffraction. The size and morphology of the resulting crystals can be tuned by the composition of the precursor. X-ray photoelectron and infrared spectroscopies indicate that the deposition of highly lamellar MoO3 directly on an oxidized (400 nm SiO2) surface or (100) single-crystal silicon surfaces yields a layered uniphasic single-crystal film formed by cluster diffusion on the surface during pyrolysis of the metal-carbonyl derivatives. For MoO3 in its layered form, this provides a new route to an important intercalation material for high energy density battery materials.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

For a series of six-coordinate Ru(II)(CO)L or Rh(III)(X–)L porphyrins which are facially differentiated by having a naphthoquinol- or hydroquinol-containing strap across one face, we show that ligand migration from one face to the other can occur under mild conditions, and that ligand site preference is dependent on the nature of L and X–. For bulky nitrogen-based ligands, the strap can be displaced sideways to accommodate the ligand on the same side as the strap. For the ligand pyrazine, we show 1 H NMR evidence for monodentate and bidentate binding modes on both faces, dependent on ligand concentration and metalloporphyrin structure, and that inter-facial migration is rapid under normal conditions. For monodentate substituted pyridine ligands there is a site dependence on structure, and we show clear evidence of dynamic ligand migration through a series of ligand exchange reactions.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

An investigation of the electrical and hydrogen sensing properties of a novel Schottky diode based on a nanostructured lanthanum oxide-molybdenum oxide compound is presented herein. Molybdenum oxide (MoO3) nanoplatelets were grown on SiC substrates via thermal evaporation which was then subsequently coated with lanthanum oxide (La2O3) by RF sputtering. The current-voltage characteristics and hydrogen sensing performance (change in barrier height and sensitivity as well as the dynamic response) were examined from 25 to 300°C. At 180°C, a voltage shift of 2.23V was measured from the sensor while exposed to 1% hydrogen gas under a 100 μA constant reverse bias current. The results indicate that the presence of a La2O3 thin layer substantially improves the hydrogen sensitivity of the MoO3 nanoplatelets.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The cation\[Si,C,O](+) has been generated by 1) the electron ionisation (EI) of tetramethoxysilane and 2) chemical ionisation (CI) of a mixture of silane and carbon monoxide. Collisional activation (CA) experiments performed for mass-selected \[Si,C,O](+), generated by using both methods, indicate that the structure is not inserted OSiC+; however, a definitive structural assignment as Si+-CO, Si+-OC or some cyclic variant is impossible based on these results alone. Neutralisation-reionisation (+NR+) experiments for EI-generated \[Si,C,O](+) reveal a small peak corresponding to SiC+, but no detectable SiO+ signal, and thus establishes the existence of the Si+-CO isomer. CCSD(T)//B3LYP calculations employing a triple-zeta basis set have been used to explore the doublet and quartet potential-energy surfaces of the cation, as well as some important neutral states The results suggest that both Si+-CO and Si+ - OC isomers are feasible; however, the global minimum is (2)Pi SiCO+. Isomeric (2)Pi SiOC+ is 12.1 kcal mol(-1) less stable than (2)Pi SiCO+, and all quartet isomers are much higher in energy. The corresponding neutrals Si-CO and Si-OC are also feasible, but the lowest energy Si - OC isomer ((3)A") is bound by only 1.5 kcal mol(-1). We attribute most, if nor all, of the recovery signal in the +NR' experiment to SiCO+ survivor ions. The nature of the bonding in the lowest energy isomers of Si+ -(CO,OC) is interpreted with the aid of natural bond order analyses, and the ground stale bonding of SiCO+ is discussed in relation to classical analogues such as metal carbonyls and ketenes.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The phase transition of single layer molybdenum disulphide (MoS2) from semi-conducting 2H to metallic 1T and then to 1T' phases, and the effect of the phase transition on hydrogen evolution reaction (HER) are investigated within this work by density functional theory. Experimentally, 2H-MoS2 has been widely used as an excellent electrode for HER and can get charged easily. Here we find that the negative charge has a significant impact on the structural phase transition in a MoS2 monolayer. The thermodynamic stability of 1T-MoS2 increases with the negative charge state, comparing with the 2H-MoS2 structure before phase transition and the kinetic energy barrier for a phase transition from 2H to 1T decreases from 1.59 eV to 0.27 eV when 4 e- are injected per MoS2 unit. Additionally, 1T phase is found to transform into the distorted structure (1T' phase) spontaneously. On their activity toward hydrogen evolution reaction, 1T'-MoS2 structure hydrogen coverage shows comparable hydrogen evolution reaction activity to the 2H-MoS2 structure. If the charge transfer kinetics is taken into account, the catalytic activity of 1T'-MoS2 is superior to that of 2H-MoS2. Our finding provides a possible novel method for phase transition of MoS2, and enriches understanding of the catalytic properties of MoS2 for HER.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The phase transition of single layer molybdenum disulfide (MoS2) from semiconducting 2H to metallic 1T and then to 1T′ phases, and the effect of the phase transition on hydrogen evolution reaction (HER) are investigated within this work by density functional theory. Experimentally, 2H-MoS2 has been widely used as an excellent electrode for HER and can get charged easily. Here we find that the negative charge has a significant impact on the structural phase transition in a MoS2 monolayer. The thermodynamic stability of 1T-MoS2 increases with the negative charge state, comparing with the 2H-MoS2 structure before phase transition and the kinetic energy barrier for a phase transition from 2H to 1T decreases from 1.59 to 0.27 eV when 4e– are injected per MoS2 unit. Additionally, 1T phase is found to transform into the distorted structure (1T′ phase) spontaneously. On their activity toward hydrogen evolution reaction, 1T′-MoS2 structure shows comparable hydrogen evolution reaction activity to the 2H-MoS2 structure. If the charge transfer kinetics is taken into account, the catalytic activity of 1T′-MoS2 is superior to that of 2H-MoS2. Our finding provides a possible novel method for phase transition of MoS2 and enriches understanding of the catalytic properties of MoS2 for HER.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Developing nano/micro-structures which can effectively upgrade the intriguing properties of electrode materials for energy storage devices is always a key research topic. Ultrathin nanosheets were proved to be one of the potential nanostructures due to their high specific surface area, good active contact areas and porous channels. Herein, we report a unique hierarchical micro-spherical morphology of well-stacked and completely miscible molybdenum disulfide (MoS2) nanosheets and graphene sheets, were successfully synthesized via a simple and industrial scale spray-drying technique to take the advantages of both MoS2 and graphene in terms of their high practical capacity values and high electronic conductivity, respectively. Computational studies were performed to understand the interfacial behaviour of MoS2 and graphene, which proves high stability of the composite with high interfacial binding energy (−2.02 eV) among them. Further, the lithium and sodium storage properties have been tested and reveal excellent cyclic stability over 250 and 500 cycles, respectively, with the highest initial capacity values of 1300 mAh g−1 and 640 mAh g−1 at 0.1 A g−1.