994 resultados para molecular biotechnology
Resumo:
Molecular biotechnology of marine algae is referred to as the biotechnology on the identification, modification, production and utilization of marine algal molecules. It involves not only the manipulation of macromolecules such as DNA, RNA and proteins, but also deals with low molecular weight compounds such as secondary metabolites. In the last decade, molecular systematic researches to investigate the relationship and to examine the evolutionary divergence among Chinese marine algae have been carried out by Chinese scientists. For example, RAPD has been widely used in several laboratories to elucidate genetic variations of the reds, such as Porphyra, Gracilaria, Grateloupia and the greens such as Ulva and Enteromorpha. Some important data have been obtained. The study on molecular genetic markers for strain improvement is now in progress. In 1990s, genetic engineering of economic seaweeds such as Laminaria, Undaria, Porphyra, Gracilaria and Grateloupia has been studied in China. For Laminaria japonica, the successfully cultivated kelp in China, a model transformation system has been set up based on the application of plant genetic techniques and knowledge of the algal life history. Progress has been made recently in incorporating a vaccine gene into kelp genome. Evidence has been provided showing the expression of gene products as detectable vaccines. In the present paper, the progress of molecular biotechnological studies of marine algae in China, especially researches on elucidating and manipulating nucleic acids of marine algae, are reviewed.
Resumo:
A selection of interesting papers that were published in the two months before our press date in major journals most likely to report significant results in biotechnology.
Resumo:
Social and economical development is closely associated with technological innovation and a well-developed biotechnological industry. In the last few years, Brazil`s scientific production has been steadily increasing; however, the number of patents is lagging behind, with technological and translational research requiring governmental incentive and reinforcement. The Cell and Molecular Therapy Center (NUCEL) was created to develop activities in the translational research field, addressing concrete problems found in biomedical and veterinary areas and actively searching for solutions by employing a genetic engineering approach to generate cell lines over-expressing recombinant proteins to be transferred to local biotech companies, aiming at furthering the development of a national competence for local production of biopharmaceuticals of widespread use and of life-saving importance. To this end, mammalian cell engineering technologies were used to generate cell lines over-expressing several different recombinant proteins of biomedical and biotechnological interest, namely, recombinant human Amylin/IAPP for diabetes treatment, human FVIII and FIX clotting factors for hemophilia, human and bovine FSH for fertility and reproduction, and human bone repair proteins (BMPs). Expression of some of these proteins is also being sought with the baculovirus/insect cell system (BEVS) which, in many cases, is able to deliver high-yield production of recombinant proteins with biological activity comparable to that of mammalian systems, but in a much more cost-effective manner. Transfer of some of these recombinant products to local Biotech companies has been pursued by taking advantage of the Sao Paulo State Foundation (FAPESP) and Federal Government (FINEP, CNPq) incentives for joint Research Development and Innovation partnership projects.
Resumo:
The cost of enzymes that hydrolyse lignocellulosic substrates to fermentable sugars needs to be reduced to make cellulosic ethanol a cost-competitive liquid transport fuel. Sugarcane is a perennial crop and the successful integration of cellulase transgenes into the sugarcane production system requires that transgene expression is stable in the ratoon. Herein, we compared the accumulation of recombinant fungal cellobiohydrolase I (CBH I), fungal cellobiohydrolase II (CBH II), and bacterial endoglucanase (EG) in the leaves of mature, initial transgenic sugarcane plants and their mature ratoon. Mature ratoon events containing equivalent or elevated levels of active CBH I, CBH II, and EG in the leaves were identified. Further, we have demonstrated that recombinant fungal CBH I and CBH II can resist proteolysis during sugarcane leaf senescence, while bacterial EG cannot. These results demonstrate the stability of cellulase enzyme transgene expression in transgenic sugarcane and the utility of sugarcane as a biofactory crop for production of cellulases.
Resumo:
With promises of improved medical treatments, greener energy and even artificial life, the field of synthetic biology has captured the public imagination and attracted significant government and commercial investment. This excitement reached a crescendo on 21 May 2010, when scientists at the J Craig Venter Institute in the United States announced that they had made a “self-replicating synthetic bacterial cell”. This was the first living cell to have an entirely human-made genome, which means that all of the cell’s characteristics were controlled by a DNA sequence designed by scientists. This achievement in biological engineering was made possible by combining molecular biotechnology, gene synthesis technology and information technology.
Resumo:
Matrix metalloproteinases expression is used as biomarker for various cancers and associated malignancies. Since these proteinases can cleave many intracellular proteins, overexpression tends to be toxic; hence, a challenge to purify them. To overcome these limitations, we designed a protocol where full length pro-MMP2 enzyme was overexpressed in E. coli as inclusion bodies and purified using 6xHis affinity chromatography under denaturing conditions. In one step, the enzyme was purified and refolded directly on the affinity matrix under redox conditions to obtain a bioactive protein. The pro-MMP2 protein was characterized by mass spectrometry, CD spectroscopy, zymography and activity analysis using a simple in-house developed `form invariant' assay, which reports the total MMP2 activity independent of its various forms. The methodology yielded higher yields of bioactive protein compared to other strategies reported till date, and we anticipate that using the protocol, other toxic proteins can also be overexpressed and purified from E. coli and subsequently refolded into active form using a one step renaturation protocol.
Resumo:
Algae have been part of Chinese life for thousands of years. They are widely used as food and have been cited in Chinese literature as early as 2500 years ago. However, formal taxonomic studies on Chinese algae were initiated by foreign scientists only about 200 years ago, and by Chinese phycologists only about 90 years ago. This paper summarizes the history of modern phycological studies on Chinese algae and provides an overview of the achievements of phycological studies by Chinese scientists, especially on algal taxonomy, morphology, genetics, ecology and environmental research, physiology, biotechnology, algal culture, applied phycology and space phycology, in the last century. Recent development in phycological research focuses on algal floristic and molecular systematics, algal molecular biotechnology, applied phycology including micro and macroalgal cultivation and algal product development, and the roles of algae in environmental pollution control. These areas will also be the main focuses of Chinese phycological research in the foreseeable future.
Resumo:
We describe an antibody-lectin sandwich assay for quantitation of glycoforms of proteins. The assay uses deglycosylated IgG antibody immobilized on a microtiter plate to capture the protein of interest from the sample. The particular glycoform is then identified by reaction with biotin-labeled lectin, which is measured using streptavidin/alkaline phosphatase. The assay can be adapted to quantitate any protein’s glycoforms by simply substituting the antibody and lectin with specific alternatives,
Resumo:
Amphibian skin secretions are unique sources of bioactive peptides and their donor species are currently rapidly disappearing from the biosphere. Here, we report that both peptides and polyadenylated mRNAs from skin granular glands remain amenable to study in samples of stimulated skin secretions following their storage in 0.1 % aqueous trifluoroacetic acid at -20 °C for many years. Frozen acidified solutions of toad (Bombina variegata) skin secretions, stored for 12 years, were thawed and samples removed for direct reverse phase HPLC fractionation. Additional samples were removed, snap frozen and lyophilised for construction of cDNA libraries following polyadenylated mRNA capture using magnetic oligo-dT beads and reverse transcription. Using the bombesin and bradykinin peptides found in bombinid toad skin as models, individual variant peptides of each type were located in reverse phase HPLC fractions and their corresponding biosynthetic precursor-encoding mRNA transcripts were cloned from the cDNA library using a RACE PCR strategy. This study illustrates unequivocally that both amphibian skin secretion peptides and their biosynthetic precursor-encoding polyadenylated mRNAs are stable in frozen acid-solvated skin secretion samples for considerable periods of time-a finding that may have fundamental implications in the study of archived materials but also in the wider field of molecular biology.
Resumo:
Glucose 6-phosphate dehydrogenase (G6PDH) catalyzes the first step of the pentose-phosphate pathway which supplies cells with ribose 5-phosphate (R5P) and NADPH. R5P is the precursor for the biosynthesis of nucleotides while NADPH is the cofactor of several dehydrogenases acting in a broad range of biosynthetic processes and in the maintenance of the cellular redox state. RNA interference-mediated reduction of G6PDH levels in bloodstream-form Trypanosoma brucei validated this enzyme as a drug target against Human African Trypanosomiasis. Dehydroepiandrosterone (DHEA), a human steroidal pro-hormone and its derivative 16 alpha-bromoepiandrosterone (16BrEA) are uncompetitive inhibitors of mammalian G6PDH. Such steroids are also known to enhance the immune response in a broad range of animal infection models. It is noteworthy that the administration of DHEA to rats infected by Trypanosoma cruzi, the causative agent of Human American Trypanosomiasis (also known as Chagas` disease), reduces blood parasite levels at both acute and chronic infection stages. In the present work, we investigated the in vitro effect of DHEA derivatives on the proliferation of T. cruzi epimastigotes and their inhibitory effect on a recombinant form of the parasite`s G6PDH (TcG6PDH). Our results show that DHEA and its derivative epiandrosterone (EA) are uncompetitive inhibitors of TcG6PDH, with K(i) values of 21.5 +/- 0.5 and 4.8 +/- 0.3 mu M, respectively. Results from quantitative inhibition assays indicate 16BrEA as a potent inhibitor of TcG6PDH with an IC(50) of 86 +/- 8 nM and those from in vitro cell viability assays confirm its toxicity for T. cruzi epimastigotes, with a LD(50) of 12 +/- 8 mu M. In summary, we demonstrated that, in addition to host immune response enhancement, 16BrEA has a direct effect on parasite viability, most likely as a consequence of TcG6PDH inhibition. Crown Copyright (C) 2010 Published by Elsevier Ltd. All rights reserved.
Resumo:
Bone morphogenetic protein-7 (BMP-7) is a secreted multifunctional growth factor of the TGF-beta superfamily, which is predominantly known for its osteoinductive properties and emerging potential for treatment of kidney diseases. The mature 34-38 kDa disulfide-linked homodimer protein plays a key role in the differentiation of mesenchymal cells into bone and cartilage. In this study, the full-length sequence of hBMP-7 was amplified and, then, cloned, expressed, and purified from the conditioned medium of 293T cells stably transfected with a lentiviral vector. The mature protein dimer form was properly secreted and recognized by anti-BMP-7 antibodies, and the protein was shown to be glycosilated by treatment with exoglycosidase, followed by western blotting. Moreover, the activity of the purified protein was demonstrated both in vitro, by alkaline phosphatase activity in C2C12 cells, and in vivo by induction of ectopic bone formation in Balb/c Nude mice after 21 days, respectively. This recombinant protein platform may be very useful for expression of different human cytokines and other proteins for medical applications.