966 resultados para molar ratios
Resumo:
The present paper describes the synthesis of molecularly imprinted polymer - poly(methacrylic acid)/silica and reports its performance feasibility with desired adsorption capacity and selectivity for cholesterol extraction. Two imprinted hybrid materials were synthesized at different methacrylic acid (MAA)/tetraethoxysilane (TEOS) molar ratios (6:1 and 1:5) and characterized by FT-IR, TGA, SEM and textural data. Cholesterol adsorption on hybrid materials took place preferably in apolar solvent medium, especially in chloroform. From the kinetic data, the equilibrium time was reached quickly, being 12 and 20 min for the polymers synthesized at MAA/TEOS molar ratio of 6:1 and 1:5, respectively. The pseudo-second-order model provided the best fit for cholesterol adsorption on polymers, confirming the chemical nature of the adsorption process, while the dual-site Langmuir-Freundlich equation presented the best fit to the experimental data, suggesting the existence of two kinds of adsorption sites on both polymers. The maximum adsorption capacities obtained for the polymers synthesized at MAA/TEOS molar ratios of 6:1 and 1:5 were found to be 214.8 and 166.4 mg g(-1), respectively. The results from isotherm data also indicated higher adsorption capacity for both imprinted polymers regarding to corresponding non-imprinted polymers. Nevertheless, taking into account the retention parameters and selectivity of cholesterol in the presence of structurally analogue compounds (5-α-cholestane and 7-dehydrocholesterol), it was observed that the polymer synthesized at the MAA/TEOS molar ratio of 6:1 was much more selective for cholesterol than the one prepared at the ratio of 1:5, thus suggesting that selective binding sites ascribed to the carboxyl group from MAA play a central role in the imprinting effect created on MIP.
Resumo:
Liming is indispensable in acid soils for amending acidity; however, the technique may alter the cation balance in soil and, consequently, may limit the availability and uptake of nutrients. We aimed to evaluate different molar ratios between calcium (Ca) and magnesium (Mg) on the availability of soil nutrients and their influence on the productive properties of sunflower and seed quality. The experiment was carried out in a greenhouse under two types of contrasting soils and six molar combinations of CaCO3and MgCO3 in amendment of soil acidity to raise base saturation to 70%. After incubation, soil analysis was undertaken to verify the ratios obtained and nutrient availability. Morphological and production variables were analyzed at the end of the experiment, as well as accumulation of nutrients in the achenes and their physiological quality. In spite of equal base saturation between the types of soil, there were differences in the available contents of these cations. The increase in the Ca contents limited the Mg contents to the critical level of the sunflower. This result had a negative influence on the production properties of sunflower and physiological quality. In contrast, there was a compensation of the crop with greater accumulation of nutrients in the achenes under lower yield.
Resumo:
The viscosity of AOT/water/decane water-in-oil microemulsions exhibits a well-known maximum as a function of water/AOT molar ratio, which is usually attributed to increased attractions among nearly spherical droplets. The maximum can be removed by adding salt or by changing the oil to CCl4. Systematic small-angle X-ray scattering (SAXS) measurements have been used to monitor the structure of the microemulsion droplets in the composition regime where the maximum appears. On increasing the droplet concentration, the scattering intensity is found to scale with the inverse of the wavevector, a behavior which is consistent with cylindrical structures. The inverse wavevector scaling is not observed when the molar ratio is changed, moving the system away from the value corresponding to the viscosity maximum. It is also not present in the scattering from systems containing enough added salt to essentially eliminate the viscosity maximum. An asymptotic analysis of the SAXS data, complemented by some quantitative modeling, is consistent with cylindrical growth of droplets as their concentration is increased. Such elongated structures are familiar from related AOT systems in which the sodium counterion has been exchanged for a divalent one. However, the results of this study suggest that the formation of non-spherical aggregates at low molar ratios is an intrinsic property of AOT.
Resumo:
Other than halite diagenesis and organic matter degradation, Cl- and Br- are considered to be conservative in marine pore fluids. Consequently, Br-/Cl- ratios should remain constant during most diagenetic reactions. Nonetheless, Br-/Cl- molar ratios decrease to 0.00127 (~18% less than seawater value) in pore fluids from Site 833 in the Aoba Basin of the New Hebrides convergent margin despite the lack of halite diagenesis and little organic matter. Sediment at this site is largely volcanic ash, which becomes hydrated with depth as it converts to clay and zeolite minerals. These hydration reactions remove sufficient water to increase the concentrations of most solutes including Cl- and Br-. The resulting concentration gradients drive diffusion, but calculations indicate that diffusion does not decrease the Br-/Cl- ratio. Some Cl- may be leached from the ash, but insufficient amounts are available to cause the observed decrease in Br-/Cl- ratio. The limited source of Cl- suggests that proportionately more Br- than Cl- is lost from the fluids to the diagenetic solids. Similar nonconservative behavior of Cl- and Br- may occur during fluid circulation at ridge crests and flanks, thereby influencing the halide distribution in the crust.
Resumo:
A complex study of influence of various environmental factors on rates of oxygen (M_O2 ), ammonium (M_NH4), and phosphate (M_PO4) metabolism in Ahnfeltia tobuchiensis has been carried out in situ in the Izmena Bay of the Kunashir Island. The following environmental factors have been included into the investigation: photosynthetically active radiation (PAR); ammonium (NH4); phosphate (PO4); and contents of carbon (C), nitrogen (N), phosphorus (P), and chlorophyll a (Chl) in tissue. Population of agar-containing seaweed A. tobuchiensis forms a layer with thickness up to 0.5 m, which occupies about 23.3 km**2; biomass is equal to 125000 tons. Quantitative assessment of organic matter production and nutrient consumption during oxygen metabolism has been carried out for the whole population. It has been shown that daily oxygen metabolism depends on PAR intensity, concentrations of PO4 and NH4 in seawater, and contents of N and P in tissues (r**2=0.78, p<0.001). Average daily NH4 consumption is 0.21 µmol/g of dry weight/hour and depends on NH4 and O2 concentrations in seawater and on ? and Chl a contents in algal tissues (r**2=0.64, p<0.001). Average daily PO4 consumption is 0.01 µmol/g of dry weight/hour and depends on NH4 concentrations in seawater and on P contents in algal tissues (r**2=0.40, p<0.001).
Resumo:
The molar ratios of atmospheric gases change during dissolution in water due to differences in their relative solubilities. We exploited this characteristic to develop a tool to clarify the origin of ice formations in permafrost regions. Extracted from ice, molar gas ratios can distinguish buried glacier ice from intrasedimental ground ice formed by freezing groundwaters. An extraction line was built to isolate gases from ice by melting and trapping with liquid He, followed by analysis of N2, O2, Ar, 18O-O2 and 15N-N2, by continuous flow mass spectrometry. The method was tested using glacier ice, aufeis ice (river icing) and intrasedimental ground ice from sites in the Canadian Arctic. O2/Ar and N2/Ar ratios clearly distinguish between atmospheric gas in glacial ice and gases from intrasedimental ground ice, which are exsolved from freezing water. 615NN2 and 618OO2 in glacier ice, aufeis ice and intrasedimental ground ice do not show clear distinguishing trends as they are affected by various physical processes during formation such as gravitational settling, excess air addition, mixing with snow pack, and respiration.
Resumo:
Suramin is a polysulphonated napthylurea antiprotozoal and anthelminitic drug, which also presents inhibitory activity against a broad range of enzymes. Here we evaluate the effect of suramin on the hydrolytic and biological activities of secreted human group IIA phospholipase A(2) (hsPLA(2)GIIA). The hsPLA(2)GIIA was expressed in E. coli, and refolded from inclusion bodies. The hydrolytic activity of the recombinant enzyme was measured using mixed dioleoylphosphatidylcholine/dioleoylphosphatidylglycerol (DOPC/DOPG) liposomes. The activation of macrophage cell line RAW 264.7 by hsPLA(2) GIIA was monitored by NO release, and bactericidal activity against Micrococcus luteus was evaluated by colony counting and by flow cytometry using the fluorescent probe Sytox Green. The hydrolytic activity of the hsPLA(2) GIIA was inhibited by a concentration of 100 nM suramin and the activation of macrophages by hsPLA(2) GIIA was abolished at protein/suramin molar ratios where the hydrolytic activity of the enzyme was inhibited. In contrast, both the bactericidal activity of hsPLA(2) GIIA against Micrococcus luteus and permeabilization of the bacterial inner membrane were unaffected by suramin concentrations up to 50 mu M. These results demonstrate that suramin selectively inhibits the activity of the hsPLA(2) GIIA against macrophages, whilst leaving the anti-bacterial function unchanged.
Resumo:
There is an interest to create zinc/tin alloys to replace cadmium as a corrosion protective coating material. Existing aqueous electroplating systems for these alloys are commercially available but have several limitations. Dangerous and highly toxic complexing agents are uses e.g. cyanides. To overcome these problems, ionic liquids could provide a solution to obtain an alloy containing 20 to 30% of zinc. Ionic liquids (IL’s) often have wider electrochemical windows which allow the deposition of e.g. refractive metals that can not be deposited from aqueous solutions. In IL’s it is often not necessary to add complexing agents. The Zn/Sn alloy deposition from IL’s is therefore a promising application for the plating industry. Nevertheless, there are some issues with this alternative for aqueous systems. The degradation of the organic components, the control of the concentration of two metals and the risk of a two phase deposition instead of an alloy had to be overcome first. It is the main purpose of this thesis to obtain a Zn/Sn alloy with 20% zinc using IL’s as an electrolyte. First a separate study was performed on both the zinc and the tin deposition. Afterwards, an attempt to deposit a Zn/Sn alloy was made. An introduction to a study about the electrodeposition of refractive metals concludes this work. It initiated the research for oxygen-free IL’s to deposit molybdenum or tungsten. Several parameters (temperature, metal source and concentration, organic complexing agents,…) were optimized for both the zinc, tin and zinc/tin deposition. Experiments were performed both in a parallel plate cell and a Hull cell, so as to investigate the effect of current density as well. Ethaline200 was selected as electrolyte. As substrate, brass and iron were selected, while as anode a plate of the metal to deposit was chosen, tin for the alloy. The best efficiencies were always obtained on brass; however the iron substrate resulted in the best depositions. A concentration of 0.27M ZnCl2, 0.07M SnCl2 with 0.015M of K3-HEDTA as complexant resulted in a deposition containing the desired alloy with the amount of 20% zinc and 80% tin with good appearance. Refractory metals as molybdenum and tungsten cannot be electrodeposited from aqueous solutions without forming a co-deposition with Ni, Co or Fe. Here, IL’s could again provide a solution. A first requirement is the dissolution of a metal source. MoO3 could be suitable, however there are doubts about using oxides. Oxygen-free IL’s were sought for. A first attempt was the combination of ZnCl2 with chlormequat (CCC), which gave liquids below 150°C in molar ratios of 2 : 1 and 3 : 1. Unfortuna tely, MoO3 didn’t dissolve in these IL’s. Another route to design oxygen-free IL’s was the synthesis of quaternary ammonium salts. None of the methods used, proved viable as reaction time was long and resulted in very low yields. Therefore, no sufficient quantities were obtained to perform the possible electrochemical behavior of refractive metals.
Resumo:
This thesis was focused on the production, extraction and characterization of chitin:β-glucan complex (CGC). In this process, glycerol byproduct from the biodiesel industry was used as carbon source. The selected CGC producing yeast was Komagataella pastoris (formerly known as Pichia pastoris), due the fact that to achieved high cell densities using as carbon source glycerol from the biodiesel industry. Firstly, a screening of K. pastoris strains was performed in shake flask assays, in order to select the strain of K. pastoris with better performance, in terms of growth, using glycerol as a carbon source. K. pastoris strain DSM 70877 achieved higher final cell densities (92-97 g/l), using pure glycerol (99%, w/v) and in glycerol from the biodiesel industry (86%, w/v), respectively, compared to DSM 70382 strain (74-82 g/l). Based on these shake flask assays results, the wild type DSM 70877 strain was selected to proceed for cultivation in a 2 l bioreactor, using glycerol byproduct (40 g/l), as sole carbon source. Biomass production by K. pastoris was performed under controlled temperature and pH (30.0 ºC and 5.0, respectively). More than 100 g/l biomass was obtained in less than 48 h. The yield of biomass on a glycerol basis was 0.55 g/g during the batch phase and 0.63 g/g during the fed-batch phase. In order to optimize the downstream process, by increasing extraction and purification efficiency of CGC from K. pastoris biomass, several assays were performed. It was found that extraction with 5 M NaOH at 65 ºC, during 2 hours, associated to neutralization with HCl, followed by successive washing steps with deionised water until conductivity of ≤20μS/cm, increased CGC purity. The obtained copolymer, CGCpure, had a chitin:glucan molar ratio of 25:75 mol% close to commercial CGC samples extracted from A. niger mycelium, kiOsmetine from Kitozyme (30:70 mol%). CGCpure was characterized by solid-state Nuclear Magnetic Resonance (NMR) spectroscopy and Differential Scanning Calorimetry (DCS), revealing a CGC with higher purity than a CGC commercial (kiOsmetine). In order to optimize CGC production, a set of batch cultivation experiments was performed to evaluate the effect of pH (3.5–6.5) and temperature (20–40 ºC) on the specific cell growth rate, CGC production and polymer composition. Statistical tools (response surface methodology and central composite design) were used. The CGC content in the biomass and the volumetric productivity (rp) were not significantly affected within the tested pH and temperature ranges. In contrast, the effect of pH and temperature on the CGC molar ratio was more pronounced. The highest chitin: β-glucan molar ratio (> 14:86) was obtained for the mid-range pH (4.5-5.8) and temperatures (26–33 ºC). The ability of K. pastoris to synthesize CGC with different molar ratios as a function of pH and temperature is a feature that can be exploited to obtain tailored polymer compositions.(...)
Resumo:
Tese de Doutoramento em Biologia Molecular e Ambiental - Especialidade em Biologia Celular e Saúde
Resumo:
About sixty small water bodies (coastal lagoons, marshes, salt pans, channels, springs, etc.) of the Spanish Mediterranean coast were sampled seasonally for one year (1979-1980), in order to study different aspects of their chemical composition. The concentrations of major ions (alkalinity, Cl-, Ca2+, Mg2+, Na+, and K+), nutrients (N.NO-3, N.NO2-, TRP and Si), oxygen and pH were determined for this purpose. The salt concentrations measured range between 0.4 and 361.3 g l-1. The samples have been divided into four classes of salinity (in g l-1): Cl, S < 5; C2, 5 40. Within these classes, the pattern of ionic dominance recorded is remarkably constant and similar to that found in most coastal lagoons (Cl- > So42- > Alk., for the anions, and Na+ > Mg2+ > Ca2+ > K+, for the cations), although other models occur especially in the first class. The dominance of Na+ and Cl-, as well as the molar ratios Mg2+/Ca2+ and Cl- / SO42- ,clearly increase from class Cl to class C4. The hyperhaline waters include different subtypes of the major brine type"c",, of EUGSTER & HARDIE (1978), the Na+ - (Mg2+) - Cl- - (SO42-) being the most frequent. Nutrient concentrations fall within a wide range (N.NO3 from 0.1 to 1100 mg-at 1-1; PRT from 0.01 to 23.56 mg-at l-1 and Si from 1.0 to 502.0 mg-at l-1). The oxygen values are very variable too, ranging between 0 and 14.4 ml l-1. Four different patterns of nutrient distribution have been distinguished based on the mean concentrations of N.NO3-, and TRP (mean values in mg-at l-1): A, N.NO3- < 10, TRP > l ; B, N.NO3- > 100, TRP < 1; C, 10 < N.NO3- < 100, TRP < 1; C, D, N.NO3- < 10, TRP < 1. As a rule, lagoons of low salinity (C1 and C2 classes) display the nutrient pattern C, and lagoons of high salinity (C3 and C4) show the nutrient pattern D. Model A only appears in waters of very low salinity, whereas model B does not seem to be related to salinity.