125 resultados para moelle épinière
Resumo:
Le morphogène Sonic hedgehog (Shh) est requis pour le guidage axonal des neurones commissuraux lors du développement de la moelle épinière, phénomène impliquant des événements de réorganisation du cytosquelette d’actine. Bien qu’il soit généralement admis que le cytosquelette d’actine soit régulé via les petites GTPases de la famille Rho, un effet de Shh sur ces protéines n’a jamais été observé dans aucun contexte physiologique. Nous démontrons que Shh active les petites GTPases Rac1 et Cdc42 et que cette activation est rapide et donc, compatible avec les effets de guidage induits par Shh sur les neurones commissuraux. En parallèle, nous avons étudié l’activation de la protéine Boc, qui est un récepteur de Shh requis pour le guidage axonal des neurones commissuraux. Ces résultats contribuent à raffiner notre compréhension de la transduction cellulaire induite par Shh lors du guidage axonal des neurones commissuraux.
Resumo:
L’inhibition est nécessaire à la génération d’outputs coordonnés entre muscles antagonistes lors de la locomotion. Une baisse de la concentration neuronale en ions chlorure au cours du développement des mammifères conduit à l’émergence de l’inhibition. Cette baisse repose sur l’équilibre entre deux cotransporteurs cation-chlorure, KCC2 et NKCC1. KCC2 expulse Cl- de la cellule alors que NKCC1 pompe Cl- dans la cellule. L’opossum Monodelphis domestica naît dans un état très immature. Le seul comportement locomoteur qu’il présente à la naissance consiste en des mouvements rythmiques et alternés des membres antérieurs pour grimper le long du ventre de la mère vers une tétine. Les membres postérieurs sont des bourgeons immobiles dont le développement est en grande partie postnatal. Pour cette raison, cette espèce constitue un modèle idéal pour l’étude du développement locomoteur. Afin d’étudier les mécanismes conduisant à l’émergence de l’inhibition durant le développement moteur, nous avons décrit l’expression développementale de KCC2 et NKCC1 chez l’opossum postnatal par immunohistochimie au niveau des renflements spinaux. Les motoneurones et afférences primaires ont été identifiés en utilisant un marquage rétrograde au TRDA. Le marquage pour KCC2 et NKCC1 est détecté dans la moelle épinière ventrale dans la matière grise et blanche présomptive dès la naissance, ce qui suggère que l’inhibition serait déjà mise en place avant la naissance, permettant subséquemment l’alternance des membres antérieurs observée chez les nouveau-nés. L’expression développementale de KCC2 et NKCC1 suit des gradients ventrodorsal et médiolatéral, tels qu’observés chez les rongeurs (rats et souris). Le patron mature d’expression de ces cotransporteurs est observé aux alentours de la 5ème semaine postnatale lorsque la locomotion de l’opossum est mature. Enfin, entre la naissance et P5, les dendrites exprimant KCC2 au niveau de la corne dorsale sont retrouvées en apposition aux afférences primaires ce qui suggère un rôle de KCC2 dans la formation des circuits sensori-moteurs.
Resumo:
Mémoire numérisé par la Division de la gestion de documents et des archives de l'Université de Montréal.
Resumo:
Mémoire numérisé par la Division de la gestion de documents et des archives de l'Université de Montréal
Resumo:
Travail d'intégration réalisé dans le cadre du cours PHT-6113.
Resumo:
La moelle épinière (MÉ) est essentielle pour relier les informations motrices et sensorielles entre le cerveau et la périphérie. Malheureusement, elle peut facilement être endommagée suite à un traumatisme médullaire (TM) ou des pathologies comme la sclérose en plaques. Chez les vertébrés inférieurs, tels les amphibiens, la MÉ lésée se régénère via ses cellules souches endogènes, alors que celle des mammifères démontre une très faible habileté régénératrice post-traumatique. Des travaux récents ont démontré que la MÉ des mammifères contient des cellules souches neurales latentes correspondant aux cellules épendymaires du canal central. D’autres études ont prouvé qu’à la suite d’un TM, les cellules souches épendymaires (cSÉ) prolifèrent, migrent vers le site de la lésion et se différencient principalement en cellules gliales. Promouvoir la régénération de la MÉ endommagée via la modulation des cellules souches endogènes devient donc une voie thérapeutique intéressante. Isolant des cellules souches/progénitrices de la MÉ via la culture de neurosphères (NS), nos études in vitro, en présence de cytokines inflammatoires ou de milieu conditionné auxmacrophages, suggèrent que la réponse inflammatoire influence fortement la prolifération et la différentiation des cSÉ. Dans l’objectif de définir le programme génétique relié à l’activation des cSÉ de la MÉ, nous avons débuté l’élaboration d’un protocole d’isolement des cSÉ à l’aide d’un modèle de souris transgénique.
Resumo:
Le traumatisme de la moelle épinière est à l’origine d’une inflammation locale importante caractérisée par l’augmentation massive des cellules inflammatoires et la présence de réactions oxydatives. Cette inflammation locale peut déclencher une réponse inflammatoire systémique par voie hématogène. Au niveau cervical, les lésions médullaires peuvent entraîner des faiblesses ou la paralysie des muscles respiratoires. Le patient, qui ne peut plus respirer de façon autonome, doit avoir recours à un support respiratoire. Bien que la ventilation mécanique soit la thérapie traditionnellement appliquée aux blessés médullaires souffrant d’insuffisance respiratoire, les études ont démontré qu’elle pouvait contribuer à promouvoir une réponse inflammatoire ainsi que des dommages pulmonaires. L’interaction entre le traumatisme médullaire et la ventilation mécanique, indispensable au maintien de l’équilibre des échanges respiratoires, est inconnue à ce jour. En voulant protéger les tissus, cellules et organes, l’organisme met en œuvre toute une panoplie de réponses inflammatoires à différents endroits. Nous pensons que ces réponses peuvent être altérées via l’interaction entre ce traumatisme et cette ventilation mécanique, sous l’influence de la principale source cellulaire de cytokines pour la défense de l’hôte, le macrophage, récemment classé en deux phénotypes principaux: 1) l’activation classique de type M1 et 2) l’activation alternative de type M2. Le phénotype M1 est conduit par le facteur GM-CSF et induit par l’interféron IFN-ɣ ainsi que le lipopolysaccharide. Le phénotype M2 quant à lui, est conduit par le facteur M-CSF et induit par les interleukines IL-4, IL-13 ou IL-21. M1 relâche principalement IL-1β, IL-6, TNF-α et MIP-1α tandis que M2 principalement IL-10 et MCP-1. Toutefois, nous ignorons actuellement par quel type d’activation se manifestera cette réponse immunitaire et si l’application de support respiratoire pourrait entraîner un risque inflammatoire additionnel au site du traumatisme. Nous ignorons également si la ventilation mécanique affecterait, à distance, les tissus de la moelle épinière via une inflammation systémique et amplifierait alors le dommage initial. Il n’existe pas à ce jour, de thérapie qui ait montré d’effet bénéfique réel envers une récupération fonctionnelle des patients blessés médullaires. Il paraît donc essentiel de déterminer si la ventilation mécanique peut moduler l’inflammation post-traumatique à la fois au niveau pulmonaire et au site de la lésion. Ce travail visait à caractériser les liens entre l’inflammation issue du traumatisme médullaire et celle issue de la ventilation, dans le but de fournir une meilleure compréhension des mécanismes inflammatoires activés dans ce contexte. L’étude a été menée sur un modèle animal. Elle consistait à évaluer : 1) si le traumatisme médullaire influençait les réponses inflammatoires pulmonaires induites par la ventilation mécanique, y compris le phénotype des macrophages alvéolaires et 2) si la ventilation pouvait altérer à distance, les tissus de la moelle épinière. L’impact de la blessure médullaire sur l’inflammation pulmonaire et locale, induite par la ventilation fut interprété grâce à l’analyse des cellules inflammatoires dans les lavages broncho-alvéolaires et dans les tissus prélevés à l’endroit de la blessure après 24 heures. Ces analyses ont démontré un profil spécifique des cytokines pulmonaires et médullaires. Elles ont révélé que la ventilation mécanique a engendré un environnement pro-inflammatoire en faveur d’un phénotype M1 chez les animaux ayant bénéficié de la thérapie respiratoire. Inversement, l’atteinte thoracique chez les animaux sans ventilation, a montré qu’une réponse immunitaire avait été activée en faveur d’un environnement anti-inflammatoire de phénotype M2. La lésion cervicale quant à elle a induit un profil de cytokines différent et les réponses au stress oxydatif dans le poumon induites par la ventilation ont été réduites significativement. De plus, une lésion médullaire a augmenté l’expression d’IL-6 et la ventilation a diminué l’IL-1β et augmenté le TNF-α dans les tissus de la moelle. Finalement, ces données ont fourni les premières évidences que la ventilation a induit d’avantage à un phénotype pulmonaire M1 et que le traumatisme médullaire a impacté spécifiquement les réponses inflammatoires et oxydatives dans le poumon. La ventilation a contribué non seulement à distance à une inflammation des tissus médullaires lésés mais aussi des tissus sains.
Resumo:
Mode of access: Internet.
Resumo:
Mode of access: Internet.
Resumo:
Mode of access: Internet.
Resumo:
3d ed. has title: Traité des maladies de la moelle épinière.
Resumo:
Thèse numérisée par la Direction des bibliothèques de l'Université de Montréal.