995 resultados para modified bitumen emulsion


Relevância:

100.00% 100.00%

Publicador:

Resumo:

The effect of emulsification on the styrene-butadiene-styrene (SBS) chemically modified bitumens (CMBs) is studied by conventional tests, differential scanning calorimetry (DSC) and fourier transform infrared (FTIR) spectroscopy. Compared to CMBs, modified bitumen emulsion residues (MBERs) exhibit higher temperature susceptibility, inferior resistant to cracking and deformation, lower elastic recovery and storage stability whereas these properties are improved substantially relative to base bitumens. DSC results show that the thermostability of CMBs decreased slightly after emulsification which indicate the emulsification exerts very little effect on the thermal property of CMBs. The FTIR results do not indicate any chemical reaction exists on CMBs during the emulsification.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Bitumen modification by polyethylene addition usually improves the mechanical properties of the binder and, therefore, the behavior in service of the bituminous mix: thermal susceptibility and rutting can be diminished, whilst the resistance to low temperature cracking may increase. To achieve this improvement it is necessary a good compatibility between the base bitumen and the polyethylene. Low compatibility between bitumen and polyethylene can lead to phase separation: the polymer- asphalt incompatibility translates into a deterioration of ultimate properties. The object of this research project was to determine if these problems can be diminished by using certain compatibilizer agents, e.g. an aromatic extract from the oil refinery. Compatibility and stability of the polyethylene modified bitumen were studied using conventional test methods and dynamic shear reometer (DSR). Blends of bitumen and polyethylene were prepared with neat bitumen (PMB) or bitumen with compatibilizer as component of the binder (PMBC) and then compared. The experimental results show that “colloid instability index”(IC) is a parameter that can be used to control the compatibility between bitumen and polyethylene. From polyethylene point of view, one of the parameters that govern is the “melt flow index” (MFI). Experimental results show that PMBC formulated with low IC bitumen and hi gh MFI lineal polyethylene can be considered as stable binder.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Several roads in Iceland with bio-oil modified surface dressings exhibited severe distresses such as bleeding, binder drain down, and eventually as surface dressing sticking to tires. Samples from six road sections were evaluated in the laboratory to determine the causes of the failure. Binders with and without bio-oil, rapeseed oil and fish oil, were evaluated through a comprehensive rheological and chemical characterization. Both oils, exhibited solubility issues with the bitumen; consequently, the oils covered the aggregates, preventing bonding between binder and stones. It appears that fish oil worked a little better than rapeseed oil for binder modification.

Relevância:

90.00% 90.00%

Publicador:

Relevância:

80.00% 80.00%

Publicador:

Resumo:

The aim of this study was to design a controlled release vehicle for insulin to preserve its stability and biological activity during fabrication and release. A modified, double emulsion, solvent evaporation, technique using homogenisation force optimised entrapment efficiency of insulin into biodegradable nanoparticles (NP) prepared from poly (dl-lactic-co-glycolic acid) (PLGA) and its PEGylated diblock copolymers. Formulation parameters (type of polymer and its concentration, stabiliser concentration and volume of internal aqueous phase) and physicochemical characteristics (size, zeta potential, encapsulation efficiency, in vitro release profiles and in vitro stability) were investigated. In vivo insulin sensitivity was tested by dietinduced type II diabetic mice. Bioactivity of insulin was studied using Swiss TO mice with streptozotocin-induced type I diabetic profile. Insulin-loaded NP were spherical and negatively charged with an average diameter of 200–400 nm. Insulin encapsulation efficiency increased significantly with increasing ratio of co-polymeric PEG. The internal aqueous phase volume had a significant impact on encapsulation efficiency, initial burst release and NP size. Optimised insulin NP formulated from 10% PEG-PLGA retained insulin integrity in vitro, insulin sensitivity in vivo and induced a sustained hypoglycaemic effect from 3 hours to 6 days in type I diabetic mice.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Dissertação para obtenção do grau de Mestre em Engenharia Civil na Área de Especialização em Vias de Comunicação e Transportes

Relevância:

80.00% 80.00%

Publicador:

Resumo:

The country has witnessed tremendous increase in the vehicle population and increased axle loading pattern during the last decade, leaving its road network overstressed and leading to premature failure. The type of deterioration present in the pavement should be considered for determining whether it has a functional or structural deficiency, so that appropriate overlay type and design can be developed. Structural failure arises from the conditions that adversely affect the load carrying capability of the pavement structure. Inadequate thickness, cracking, distortion and disintegration cause structural deficiency. Functional deficiency arises when the pavement does not provide a smooth riding surface and comfort to the user. This can be due to poor surface friction and texture, hydro planning and splash from wheel path, rutting and excess surface distortion such as potholes, corrugation, faulting, blow up, settlement, heaves etc. Functional condition determines the level of service provided by the facility to its users at a particular time and also the Vehicle Operating Costs (VOC), thus influencing the national economy. Prediction of the pavement deterioration is helpful to assess the remaining effective service life (RSL) of the pavement structure on the basis of reduction in performance levels, and apply various alternative designs and rehabilitation strategies with a long range funding requirement for pavement preservation. In addition, they can predict the impact of treatment on the condition of the sections. The infrastructure prediction models can thus be classified into four groups, namely primary response models, structural performance models, functional performance models and damage models. The factors affecting the deterioration of the roads are very complex in nature and vary from place to place. Hence there is need to have a thorough study of the deterioration mechanism under varied climatic zones and soil conditions before arriving at a definite strategy of road improvement. Realizing the need for a detailed study involving all types of roads in the state with varying traffic and soil conditions, the present study has been attempted. This study attempts to identify the parameters that affect the performance of roads and to develop performance models suitable to Kerala conditions. A critical review of the various factors that contribute to the pavement performance has been presented based on the data collected from selected road stretches and also from five corporations of Kerala. These roads represent the urban conditions as well as National Highways, State Highways and Major District Roads in the sub urban and rural conditions. This research work is a pursuit towards a study of the road condition of Kerala with respect to varying soil, traffic and climatic conditions, periodic performance evaluation of selected roads of representative types and development of distress prediction models for roads of Kerala. In order to achieve this aim, the study is focused into 2 parts. The first part deals with the study of the pavement condition and subgrade soil properties of urban roads distributed in 5 Corporations of Kerala; namely Thiruvananthapuram, Kollam, Kochi, Thrissur and Kozhikode. From selected 44 roads, 68 homogeneous sections were studied. The data collected on the functional and structural condition of the surface include pavement distress in terms of cracks, potholes, rutting, raveling and pothole patching. The structural strength of the pavement was measured as rebound deflection using Benkelman Beam deflection studies. In order to collect the details of the pavement layers and find out the subgrade soil properties, trial pits were dug and the in-situ field density was found using the Sand Replacement Method. Laboratory investigations were carried out to find out the subgrade soil properties, soil classification, Atterberg limits, Optimum Moisture Content, Field Moisture Content and 4 days soaked CBR. The relative compaction in the field was also determined. The traffic details were also collected by conducting traffic volume count survey and axle load survey. From the data thus collected, the strength of the pavement was calculated which is a function of the layer coefficient and thickness and is represented as Structural Number (SN). This was further related to the CBR value of the soil and the Modified Structural Number (MSN) was found out. The condition of the pavement was represented in terms of the Pavement Condition Index (PCI) which is a function of the distress of the surface at the time of the investigation and calculated in the present study using deduct value method developed by U S Army Corps of Engineers. The influence of subgrade soil type and pavement condition on the relationship between MSN and rebound deflection was studied using appropriate plots for predominant types of soil and for classified value of Pavement Condition Index. The relationship will be helpful for practicing engineers to design the overlay thickness required for the pavement, without conducting the BBD test. Regression analysis using SPSS was done with various trials to find out the best fit relationship between the rebound deflection and CBR, and other soil properties for Gravel, Sand, Silt & Clay fractions. The second part of the study deals with periodic performance evaluation of selected road stretches representing National Highway (NH), State Highway (SH) and Major District Road (MDR), located in different geographical conditions and with varying traffic. 8 road sections divided into 15 homogeneous sections were selected for the study and 6 sets of continuous periodic data were collected. The periodic data collected include the functional and structural condition in terms of distress (pothole, pothole patch, cracks, rutting and raveling), skid resistance using a portable skid resistance pendulum, surface unevenness using Bump Integrator, texture depth using sand patch method and rebound deflection using Benkelman Beam. Baseline data of the study stretches were collected as one time data. Pavement history was obtained as secondary data. Pavement drainage characteristics were collected in terms of camber or cross slope using camber board (slope meter) for the carriage way and shoulders, availability of longitudinal side drain, presence of valley, terrain condition, soil moisture content, water table data, High Flood Level, rainfall data, land use and cross slope of the adjoining land. These data were used for finding out the drainage condition of the study stretches. Traffic studies were conducted, including classified volume count and axle load studies. From the field data thus collected, the progression of each parameter was plotted for all the study roads; and validated for their accuracy. Structural Number (SN) and Modified Structural Number (MSN) were calculated for the study stretches. Progression of the deflection, distress, unevenness, skid resistance and macro texture of the study roads were evaluated. Since the deterioration of the pavement is a complex phenomena contributed by all the above factors, pavement deterioration models were developed as non linear regression models, using SPSS with the periodic data collected for all the above road stretches. General models were developed for cracking progression, raveling progression, pothole progression and roughness progression using SPSS. A model for construction quality was also developed. Calibration of HDM–4 pavement deterioration models for local conditions was done using the data for Cracking, Raveling, Pothole and Roughness. Validation was done using the data collected in 2013. The application of HDM-4 to compare different maintenance and rehabilitation options were studied considering the deterioration parameters like cracking, pothole and raveling. The alternatives considered for analysis were base alternative with crack sealing and patching, overlay with 40 mm BC using ordinary bitumen, overlay with 40 mm BC using Natural Rubber Modified Bitumen and an overlay of Ultra Thin White Topping. Economic analysis of these options was done considering the Life Cycle Cost (LCC). The average speed that can be obtained by applying these options were also compared. The results were in favour of Ultra Thin White Topping over flexible pavements. Hence, Design Charts were also plotted for estimation of maximum wheel load stresses for different slab thickness under different soil conditions. The design charts showed the maximum stress for a particular slab thickness and different soil conditions incorporating different k values. These charts can be handy for a design engineer. Fuzzy rule based models developed for site specific conditions were compared with regression models developed using SPSS. The Riding Comfort Index (RCI) was calculated and correlated with unevenness to develop a relationship. Relationships were developed between Skid Number and Macro Texture of the pavement. The effort made through this research work will be helpful to highway engineers in understanding the behaviour of flexible pavements in Kerala conditions and for arriving at suitable maintenance and rehabilitation strategies. Key Words: Flexible Pavements – Performance Evaluation – Urban Roads – NH – SH and other roads – Performance Models – Deflection – Riding Comfort Index – Skid Resistance – Texture Depth – Unevenness – Ultra Thin White Topping

Relevância:

80.00% 80.00%

Publicador:

Resumo:

PURPOSE: Alzheimer's disease (AD) is one of the untreatable neurodegenerative diseases characterised by the pathologic amyloid plaque deposition and inflammation. The aim of this study is to evaluate the neuroprotective effects of nanoformulated SurR9-C84A, a survivin mutant belonging to the inhibitors of the apoptosis (IAP) protein family. The effect of SurR9-C84A was studied against the β-amyloid toxicity and various inflammatory insults in the differentiated SK-N-SH neurons. METHOD: SurR9-C84A loaded poly(lactic-co-glycolic acid) nanoparticles were prepared following the modified double emulsion technique. The neuroprotective effect of SurR9-C84A was evaluated against the amyloid-β (Aβ) peptide fragment, N-methyl-D-aspartate (NMDA) toxicity and the inflammatory assaults. To mimic the in vivo situation, a co-culture of neurons and microglia was also studied to validate these results. RESULTS: SurR9-C84A treatments showed improved neuronal health following Aβ, and NMDA toxicity in addition to inflammatory insults induced in mono and co-cultures. The neuroprotective effect was evident with the reduced neuronal death, accelerated expression of neuronal integrity markers (neurofilaments, beta-tubulin III etc.,) and the neuroprotective ERK/MAPK signalling. CONCLUSION: The current results demonstrated that the SurR9-C84A nanoformulation was very effective in rescuing the neurons and holds a potential future application against AD.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

The increasing demand for asphalt leads to the development of techniques that can improve the quality of products and increase the useful working life of pavements. Consequently, there is a growing application of asphalt emulsions, which are produced from a mixture of petroleum asphalt cement (CAP) with an aqueous phase. The main advantage of asphalt emulsions is its cold application, reducing energy costs. Conventional emulsions are obtained using asphalt, water, solvent, and additives. The modified asphalt emulsion is developed by adding a modifying agent to conventional emulsions. These modifiers can be natural fibers, waste polymers, nanomaterials. In this work modified asphalt emulsion were obtained using organoclays. First, it was prepared a conventional asphalt emulsion with the following mass proportion: 50% of 50/70 penetration grade CAP, 0.6% of additives and 3% of emulsifier, 20% of solvent and 26.4% of water. It was used bentonite and vermiculite (1% and 4%) to obtain the modified asphalt emulsion. Bentonite and vermiculite were added in its raw state and as an organoclay form and as an organoclay-acid form, resulting in 26 experimental runs. The methodology described by Qian et al. (2011), with modifications, was used to obtain the organoclay and the organoclay-acid form. infrared spectroscopy (IR)) were used to characterize the clays and nanoclays. The emulsions were prepared in a colloidal mill, using 30 minutes and 1 hour as mixing time. After, the emulsions were characterized. The following tests were performed, in accordance with the Brazilian specifications (DNER- 369/97): sieve analysis, Saybolt Furol viscosity, pH determination, density, settlement and storage stability, residue by evaporation, and penetration of residue. Finally, it can be concluded that the use of nanoclays as asphalt modifiers represent a viable alternative to the road paving industry

Relevância:

80.00% 80.00%

Publicador:

Resumo:

In the past a change in temperature of 5°C most often occurred over intervals of thousands of years. According to estimates by the IPCC, in the XXI century is expected an increase in average temperatures in Europe between 1.8 and 4.0°C in the best case caused by emissions of carbon dioxide and other GHG from human activities. As well as on the environment and economic context, global warming will have effects even on road safety. Several studies have already shown how increasing temperature may cause a worsening of some types of road surface damages, especially rutting, a permanent deformation of the road structures consisting in the formation of a longitudinal depression in the wheelpath, mostly due to the rheological behavior of bitumen. This deformation evolves during the hot season because of the heating capacity of the asphalt layers, in fact, the road surface temperature is up to 24°C higher than air. In this thesis, through the use of Wheeltrack test, it was studied the behavior of some types of asphalt concrete mixtures subjected to fatigue testing at different temperatures. The objectives of this study are: to determine the strain variation of different bituminous mixture subjected to fatigue testing at different temperature conditions; to investigate the effect of aggregates, bitumen and mixtures’ characteristics on rutting. Samples were made in the laboratory mostly using an already prepared mixtures, the others preparing the asphalt concrete from the grading curve and bitumen content. The same procedure was performed for each specimen: preparation, compaction using the roller compactor, cooling and heating before the test. The tests were carried out at 40 - 50 - 60°C in order to obtain the evolution of deformation with temperature variation, except some mixtures for which the tests were carried out only at 50°C. In the elaboration of the results were considered testing parameters, component properties and the characteristics of the mixture. Among the testing parameters, temperature was varied for each sample. The mixtures responded to this variation with a different behavior (linear logarithmic and exponential) not directly correlated with the asphalt characteristics; the others parameters as load, passage frequency and test condition were kept constant. According to the results obtained, the main contribution to deformation is due to the type of binder used, it was found that the modified bitumen have a better response than the same mixtures containing traditional bitumen; to the porosity which affects negatively the behavior of the samples and to the homogeneity ceteris paribus. The granulometric composition did not seem to have interfered with the results. Overall has emerged at working temperature, a decisive importance of bitumen composition, than the other characteristics of the mixture, that tends to disappear with heating in favor of increased dependence of rutting resistance from the granulometric composition of the sample considered. In particular it is essential, rather than the mechanical characteristics of the binder, its chemical properties given by the polymeric modification. To confirm some considered results, the maximum bulk density and the air voids content were determined. Tests have been conducted in the laboratories of the Civil Engineering Department at NTNU in Trondheim according to European Standards.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Il recupero dei materiali di scarto è un aspetto di grande attualità in campo stradale, così come negli altri ambiti dell’ingegneria civile. L’attenzione della ricerca e degli esperti del settore è rivolta all’affinamento di tecniche di riciclaggio che riducano l’impatto ambientale senza compromettere le prestazioni meccaniche finali. Tali indagini cercano di far corrispondere le necessità di smaltimento dei rifiuti con quelle dell’industria infrastrutturale, legate al reperimento di materiali da costruzione tecnicamente idonei ed economicamente vantaggiosi. Attualmente sono già diversi i tipi di prodotti rigenerati e riutilizzati nella realizzazione delle pavimentazioni stradali e numerosi sono anche quelli di nuova introduzione in fase di sperimentazione. In particolare, accanto ai materiali derivanti dalle operazioni di recupero della rete viaria, è opportuno considerare anche quelli provenienti dall’esercizio delle attività di trasporto, il quale comporta ogni anno il raggiungimento della fine della vita utile per centinaia di migliaia di tonnellate di pneumatici di gomma. L’obiettivo della presente analisi sperimentale è quello di fornire indicazioni e informazioni in merito alla tecnica di riciclaggio a freddo con emulsione bituminosa e cemento, valutando la possibilità di applicazione di tale metodologia in combinazione con il polverino di gomma, ottenuto dal recupero degli pneumatici fuori uso (PFU). La ricerca si distingue per una duplice valenza: la prima è quella di promuovere ulteriormente la tecnica di riciclaggio a freddo, che si sta imponendo per i suoi numerosi vantaggi economici ed ambientali, legati soprattutto alla temperatura d’esercizio; la seconda è quella di sperimentare l’utilizzo del polverino di gomma, nelle due forme di granulazione tradizionale e criogenica, additivato a miscele costituite interamente da materiale proveniente da scarifica di pavimentazioni esistenti e stabilizzate con diverse percentuali di emulsione di bitume e di legante cementizio.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Biodegradable poly(dl-lactide-co-glycolide) microspheres were prepared using a modified double emulsion solvent evaporation method for the delivery of the subunit tuberculosis vaccine (Ag85B-ESAT-6), a fusion protein of the immunodominant antigens 6-kDa early secretory antigenic target (ESAT-6) and antigen 85B (Ag85B). Addition of the cationic lipid dimethyl dioctadecylammonium bromide (DDA) and the immunostimulatory trehalose 6,6'-dibehenate (TDB), either separately or in combination, was investigated for the effect on particle size and distribution, antigen entrapment efficiency, in vitro release profiles and in vivo performance. Optimised formulation parameters yielded microspheres within the desired sub-10 mu m range (1.50 +/- 0.13 mu m), whilst exhibiting a high antigen entrapment efficiency (95 +/- 1.2%) and prolonged release profiles. Although the microsphere formulations induced a cell-mediated immune response and raised specific antibodies after immunisation, this was inferior to the levels achieved with liposomes composed of the same adjuvants (DDA-TDB), demonstrating that liposomes are more effective vaccine delivery systems compared with microspheres.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

The most frequent use of bitumen is as binder for pavement applications. The effect of sulphur addition on the properties of the bitumen has been extensively studied several decades ago. Recently, there is a renewed interest in researching the behaviour of sulphur-bitumen combination, because off 1.The future availability of bitumen may be limited and 2. The beneficial consumption of great amounts of sulphur compounds from petroleum refining is advisable. The addition of sulphur to bitumen provokes the beginning of chemical reactions depending on the sulphur content and heating temperature. At heating temperatures T< 140 ºC liquid sulphur reacts with naphthenic-aromatic fraction forming polysulphides. At temperatures above 150 ºC dehydrogenization reactions with emission of hydrogen sulfide take place and naphthenic-aromatic molecules are transformed into asphaltenes. Therefore, the addition of sulphur to bitumen provokes changes in the chemical structure of the bitumen. The objective of this work is to analyze, the thermal behaviour of sulphur-bitumen mixtures of different composition (0-35 %wt sulphur content) prepared at 130 and 140 ºC, by means of differential scanning calorimetry (DSC). Besides, the volatile emissions of the mixtures at high temperature have been estimated from loss weight measurements as a function of stored time