960 resultados para moderate intensity


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Objective To explore the feasibility of conducting a 10-week home-based physical activity (PA) programme and evaluate the changes in insulin sensitivity (S I) commensurate with the programme in obese young people. Design Open-labelled intervention. Setting Home-based intervention with clinical assessments at a tertiary paediatric hospital. Subjects 18 obese (body mass index (BMI)>International Obesity Task Force age and sex-specifi c cut-offs) children and adolescents (8-18 years, 11 girls/7 boys) were recruited. 15 participants (nine girls/six boys, mean±SE age 11.8±0.6 years, BMI-SD scores (BMI-SDS) 3.5±0.1, six prepubertal/nine pubertal) completed the intervention. Intervention The programme comprised biweekly home visits over 10 weeks with personalised plans implemented aiming to increase moderate-intensity PA. Pedometers and PA diaries were used as self-monitoring tools. The goals were to (1) teach participants behavioural skills related to adopting and maintaining an active lifestyle and (2) increase daily participation in PA. Outcome measures Mean steps/day were assessed. SI assessed by the frequently sampled intravenous glucose tolerance test and other components of the insulin resistance syndrome were measured. Results Mean steps/day increased significantly from 10 363±927 (baseline) to 13 013±1131 (week 10) (p<0.05). S I was also significantly increased, despite no change in BMI-SDS, and remained so after an additional 10-week follow-up. Conclusions The results suggest that such a homebased PA programme is feasible. S I improved without changes in BMI-SDS. More rigorous evaluations of such programmes are warranted.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

This study investigated the effects of high-intensity interval training (HIIT) vs. work-matched moderate-intensity continuous exercise (MOD) on metabolism and counterregulatory stress hormones. In a randomized and counterbalanced order, 10 well-trained male cyclists and triathletes completed a HIIT session [81.6 ± 3.7% maximum oxygen consumption (V̇o2 max); 72.0 ± 3.2% peak power output; 792 ± 95 kJ] and a MOD session (66.7 ± 3.5% V̇o2 max; 48.5 ± 3.1% peak power output; 797 ± 95 kJ). Blood samples were collected before, immediately after, and 1 and 2 h postexercise. Carbohydrate oxidation was higher (P = 0.037; 20%), whereas fat oxidation was lower (P = 0.037; −47%) during HIIT vs. MOD. Immediately after exercise, plasma glucose (P = 0.024; 20%) and lactate (P < 0.01; 5.4×) were higher in HIIT vs. MOD, whereas total serum free fatty acid concentration was not significantly different (P = 0.33). Targeted gas chromatography-mass spectromtery metabolomics analysis identified and quantified 49 metabolites in plasma, among which 11 changed after both HIIT and MOD, 13 changed only after HIIT, and 5 changed only after MOD. Notable changes included substantial increases in tricarboxylic acid intermediates and monounsaturated fatty acids after HIIT and marked decreases in amino acids during recovery from both trials. Plasma adrenocorticotrophic hormone (P = 0.019), cortisol (P < 0.01), and growth hormone (P < 0.01) were all higher immediately after HIIT. Plasma norepinephrine (P = 0.11) and interleukin-6 (P = 0.20) immediately after exercise were not significantly different between trials. Plasma insulin decreased during recovery from both HIIT and MOD (P < 0.01). These data indicate distinct differences in specific metabolites and counterregulatory hormones following HIIT vs. MOD and highlight the value of targeted metabolomic analysis to provide more detailed insights into the metabolic demands of exercise.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

This study compared fat oxidation rate from a graded exercise test (GXT) with a moderate-intensity interval training session (MIIT) in obese men. Twelve sedentary obese males (age 29 ± 4.1 years; BMI 29.1 ± 2.4 kg·m-2; fat mass 31.7 ± 4.4 %body mass) completed two exercise sessions: GXT to determine maximal fat oxidation (MFO) and maximal aerobic power (VO2max), and an interval cycling session during which respiratory gases were measured. The 30-min MIIT involved 5-min repetitions of workloads 20% below and 20% above the MFO intensity. VO2max was 31.8 ± 5.5 ml·kg-1·min-1 and all participants achieved ≥ 3 of the designated VO2max test criteria. The MFO identified during the GXT was not significantly different compared with the average fat oxidation rate in the MIIT session. During the MIIT session, fat oxidation rate increased with time; the highest rate (0.18 ± 0.11 g·min- 1) in minute 25 was significantly higher than the rate at minute 5 and 15 (p ≤ 0.01 and 0.05 respectively). In this cohort with low aerobic fitness, fat oxidation during the MIIT session was comparable with the MFO determined during a GXT. Future research may consider if the varying workload in moderate-intensity interval training helps adherence to exercise without compromising fat oxidation.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Dietary nitrate (NO3−) supplementation with beetroot juice (BR) over 4–6 days has been shown to reduce the O2 cost of submaximal exercise and to improve exercise tolerance. However, it is not known whether shorter (or longer) periods of supplementation have similar (or greater) effects. We therefore investigated the effects of acute and chronic NO3− supplementation on resting blood pressure (BP) and the physiological responses to moderate-intensity exercise and ramp incremental cycle exercise in eight healthy subjects. Following baseline tests, the subjects were assigned in a balanced crossover design to receive BR (0.5 l/day; 5.2 mmol of NO3−/day) and placebo (PL; 0.5 l/day low-calorie juice cordial) treatments. The exercise protocol (two moderate-intensity step tests followed by a ramp test) was repeated 2.5 h following first ingestion (0.5 liter) and after 5 and 15 days of BR and PL. Plasma nitrite concentration (baseline: 454 ± 81 nM) was significantly elevated (+39% at 2.5 h postingestion; +25% at 5 days; +46% at 15 days; P < 0.05) and systolic and diastolic BP (baseline: 127 ± 6 and 72 ± 5 mmHg, respectively) were reduced by ∼4% throughout the BR supplementation period (P < 0.05). Compared with PL, the steady-state V̇o2 during moderate exercise was reduced by ∼4% after 2.5 h and remained similarly reduced after 5 and 15 days of BR (P < 0.05). The ramp test peak power and the work rate at the gas exchange threshold (baseline: 322 ± 67 W and 89 ± 15 W, respectively) were elevated after 15 days of BR (331 ± 68 W and 105 ± 28 W; P < 0.05) but not PL (323 ± 68 W and 84 ± 18 W). These results indicate that dietary NO3− supplementation acutely reduces BP and the O2 cost of submaximal exercise and that these effects are maintained for at least 15 days if supplementation is continued.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The application of electromagnetic field in the context of bacteria associated infections on biomaterial surfaces has not been extensively explored. In this work, we applied a moderate intensity static magnetic field (100 mT) to understand the adhesion and growth behavior of both gram positive (S. epidermidis) and gram negative bacteria (E. coli) and also to investigate bactericidal/bacteriostatic property of the applied electromagnetic field. An in-house built magnetometer was used to apply static homogeneous magnetic field during a planned set of in vitro experiments. Both the sintered hydroxyapatite (HA) and the control samples seeded with bacteria were exposed to the magnetic field (100 mT) for different timescale during their log phase growth. Quantitative analysis of the SEM images confirms the effect of electromagnetic field on suppressing bacterial growth. Furthermore, cell integrity and inner membrane permeabilization assays were performed to understand the origin of such effect. The results of these assays were statistically analyzed to reveal the bactericidal effect of magnetic field, indicating cell membrane damage. Under the investigated culture conditions, the bactericidal effect was found to be less effective for S. Epidermidis than E. coli. (c) 2012 Wiley Periodicals, Inc. J Biomed Mater Res Part B: Appl Biomater 2012:100B:12061217, 2012.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Background
The purpose of this study was to examine the reliability of stage of change (SOC) measures for moderate-intensity and vigorous physical activity in two separate samples of young adults. Staging measures have focused on vigorous exercise, but current public health guidelines emphasize moderate-intensity activity.
Method
For college students in the USA (n = 105) and in Australia (n = 123), SOC was assessed separately on two occasions for moderate-intensity activity and for vigorous activity. Test–retest repeatability was determined, using Cohen’s kappa coefficient.
Results
In both samples, the reliability scores for the moderate-intensity physical activity staging measure were lower than the scores for the vigorous exercise staging measure. Weighted kappa values for the moderate-intensity staging measure were in the “fair to good” range for both studies (0.50 and 0.45); for the vigorous staging measure kappa values were “excellent” and “fair to good” (0.76 and 0.72).
Conclusions
There is a need to standardize and improve methods for staging moderate-intensity activity, given that such measures are used in public health interventions targeting HEPA (health-enhancing physical activity).

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The maintenance of functional physical fitness across the lifespan depends upon the presence or absence of disease, injury, and the level of habitual physical activity. The prevalence of sedentariness rises with increasing age culminating in 31% of elderly women being classified as leading a sedentary lifestyle. Exercise prescription that involves easily accomplished physical activity may result in the maintenance of mobility into old age through a reduction in the risk of premature death and disablement from cardiovascular disease and a reduction in the risk of falls and injuries from falls. It may be that short bouts of physical activity are more appealing to the sedentary and to those in full time employment than longer bouts, and it may be that short bouts of exercise, performed three times per day, can improve physical fitness. The purpose of this study was therefore to examine the problem: Does exercise session duration, initial cardiovascular fitness, and age group effect changes in functional physical fitness in sedentary women training for strength, flexibility and aerobic fitness? Twenty-three, sedentary women aged between 19 and 54 years who were employed at a major metropolitan hospital undertook six weeks of moderate intensity physical activity in one of two training groups. Participants were randomly allocated to either short duration (3 x 10 minute), or long duration (30 minute), exercise groups. The 3 x 10 minute group (n=13), participated in three, 10 minute sessions per day separated by at least 2 hours, 3 days per week. The 30 minute group (n=10), participated in three 30 minute sessions per week. The total amount of work was similar, with an average of 129 and 148 kcal training day for the 3 x 10 minute and 30 minute groups, respectively. The training program incorporated three walking and stair climbing courses for aerobic conditioning, a series of eleven static stretches for joint flexibility, and isotonic and isometric strength exercises for lower and upper body muscular strength. Measures of functional strength, functional flexibility and cardiovascular fitness were assessed prior to training, and immediately following the six week exercise program. A two way analysis of variance (Group x Time) was used to examine the effect of training and group on the dependent variables. The level of significance, 0.05 was adopted for all statistical tests. Mean hand grip strength showed for both groups no significant change over time for the 3 x 10 minute group (30.7kg to 31.7kg) and 30 minute group (30.2kg to 32.4kg). Leg strength showed a trend for improvement (p=0.098) in both the 3 x 10 minute and 30 minute training groups representing a 15% and 18% improvement, respectively. Combined right and left neck rotation significantly improved in the 3 x 10 minute group (82.8° to 92.0°) and 30 minute group (82.5° to 91.5°). Wrist flexion and extension improved significantly in 3 out of the 4 measurements. Left wrist flexion improved significantly by an average of 7.0% for the 3 x 10 minute and 4.9% for the 30 minute group. Right and left wrist extension improved significantly in the 3 x 10 minute and 30 minute training groups (5.9% and 6.8%, respectively). Hip and spine flexibility improved 3.4cm (35.2cm to 38.6cm) in the 3 x 10 minute group, and 6.6cm (37.4cm to 44.0cm) in the 30 minute group. There was a significant improvement in cardiovascular fitness for both groups representing a 22% improvement in the 3 x 10 minute group (27.2 to 33.2 ml kg min), and a 25% improvement in the 30 minute group (27.5 to 34.4 ml -kg min). No significant difference was shown in the degree of improvement in cardiovascular fitness over six weeks of training for subjects of either low or moderate initial aerobic fitness. Grip strength showed no significant changes over time for either the young-aged (19-35 years) or middle-aged (36-54 years) groups. Leg strength showed a trend for improvement (p=0.093) in the young-aged group (63.5kg to 71.9kg) and middle-aged group (69.3kg to 85.8kg). Neck rotation flexibility improved a similar amount in both the young and middle aged groups representing an improvement of 9.9° and 8.0° respectively. There was significant improvement in two of the four measures of wrist flexibility. Hip and spine flexibility was significantly greater in the young-aged group compared to the middle-aged group (38.5cm and 30.7cm, respectively). There was a significant improvement in hip and spine flexibility over the six week training program representing an increase in reach of 6.5cm for the young age group and 4.9cm for the older group. The middle-aged subjects had significantly lower cardiovascular fitness than their younger peers, scoring 22.8 and 30.7 ml -kg min, respectively. Cardiovascular fitness improved a similar amount in both age groups representing a significant improvement of 23.8% and 28.1% for the younger-aged and middle-aged subjects, respectively. The findings of this study suggest that short bouts of exercise may be equally as effective as longer bouts of exercise for improving the flexibility and cardiovascular components of functional physical fitness in sedentary young and middle aged women. Additionally short bouts of exercise may be more attractive than longer bouts of exercise for the beginning exerciser as they may more easily fit into the busy lifestyle encountered by many people in today's society. Sedentary young and middle-aged women should benefit from static flexibility exercises designed to improve and/or maintain functional flexibility and thus maintain mobility and reduce the incidence of muscular injury. Regular, brisk walking, incorporating some stair climbing, is likely to be beneficial in improving cardiovascular health and perhaps also in improving leg strength, thereby helping to improve and maintain functional physical fitness for both young and middle-aged sedentary women.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

There is evidence that reactive oxygen species (ROS) signalling is required for normal increases in glucose uptake during contraction of isolated mouse skeletal muscle, and that AMP-activated protein kinase (AMPK) is involved. The aim of this study was to determine whether ROS signalling is involved in the regulation of glucose disposal and AMPK activation during moderate-intensity exercise in humans. Nine healthy males completed 80 min of cycle ergometry at 62 ± 1 of peak oxygen consumption ( . A 6,6-2H-glucose tracer was infused at rest and during exercise, and in a double-blind randomised cross-over design, N-acetylcysteine (NAC) or saline (CON) was co-infused. NAC was infused at 125 mg kg?1h?1for 15 min and then at 25 mg kg?1h?1for 20 min before and throughout exercise. NAC infusion elevated plasma NAC and cysteine, and muscle NAC and cysteine concentrations during exercise. Although neither NAC infusion nor exercise significantly affected muscle reduced or oxidised glutathione (GSH or GSSG) concentration (P> 0.05), S-glutathionylation (an indicator of oxidative stress) of a protein band of ?270 kDa was increased ?3-fold with contraction and this increase was prevented by NAC infusion. Despite this, exercised-induced increases in tracer determined glucose disposal, plasma lactate, plasma non-esterified fatty acids (NEFAs), and decreases in plasma insulin were not affected by NAC infusion. In addition, skeletal muscle AMPK? and acetyl-CoA carboxylase-? (ACC?) phosphorylation increased during exercise by ?3- and ?6-fold (P< 0.05), respectively, and this was not affected by NAC infusion. Unlike findings in mouse muscle ex vivo, NAC does not attenuate skeletal muscle glucose disposal or AMPK activation during moderate-intensity exercise in humans.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Thirty-nine CHF patients (New York Heart Association Functional Class = 2.3±0.5; left ventricular ejection fraction 28%±7%; age 65±11 years; 33:6 male:female) underwent 2 identical series of tests, 1 week apart, for strength and endurance of the knee and elbow extensors and flexors, VO2peak, HRV, FBF at rest, and FBF activated by forearm exercise or limb ischemia. Patients were then randomized to 3 months of resistance training (EX, n = 19), consisting of mainly isokinetic (hydraulic) ergometry, interspersed with rest intervals, or continuance with usual care (CON, n = 20), after which they underwent repeat endpoint testing. Combining all 4 movement patterns, strength increased for EX by 21±30% (mean±SD, P<.01) after training, whereas endurance improved 21±21% (P<.01). Corresponding data for CON remained almost unchanged (strength P<.005, endurance P<.003 EX versus CON). VO2peak improved in EX by 11±15% (P<.01), whereas it decreased by 10±18% (P<.05) in CON (P<.001 EX versus CON). The ratio of low-frequency to high-frequency spectral power fell after resistance training in EX by 44±53% (P<.01), but was unchanged in CON (P<.05 EX versus CON). FBF increased at rest by 20±32% (P<.01), and when stimulated by submaximal exercise (24±32%, P<.01) or limb ischemia (26±45%, P<.01) in EX, but not in CON (P<.01 EX versus CON).

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Key points: Skeletal muscle capillary density and vasoreactivity are reduced in obesity, due to reduced nitric oxide bioavailability. Sprint interval training (SIT) has been proposed as a time efficient alternative to moderate-intensity continuous training (MICT), but its effect on the skeletal muscle microvasculature has not been studied in obese individuals. We observed that SIT and MICT led to equal increases in capillarisation and endothelial eNOS content, while reducing endothelial NOX2 content in microvessels of young obese men. We conclude that SIT is equally effective at improving skeletal muscle capillarisation and endothelial enzyme balance, while being a time efficient alternative to traditional MICT. Sprint interval training (SIT) has been proposed as a time efficient alternative to moderate-intensity continuous training (MICT), leading to similar improvements in skeletal muscle capillary density and microvascular function in young healthy humans. In this study we made the first comparisons of the muscle microvascular response to SIT and MICT in an obese population. Sixteen young obese men (age 25 ± 1 years, BMI 34.8 ± 0.9 kg m-2) were randomly assigned to 4 weeks of MICT (40-60 min cycling at ∼65% V˙O2 peak , 5 times per week) or constant load SIT (4-7 constant workload intervals of 200% Wmax 3 times per week). Muscle biopsies were taken before and after training from the m. vastus lateralis to measure muscle microvascular endothelial eNOS content, eNOS serine1177 phosphorylation, NOX2 content and capillarisation using quantitative immunofluorescence microscopy. Maximal aerobic capacity (V˙O2 peak ), whole body insulin sensitivity and arterial stiffness were also assessed. SIT and MICT increased skeletal muscle microvascular eNOS content and eNOS ser1177 phosphorylation in terminal arterioles and capillaries (P < 0.05), but the latter effect was eliminated when normalised to eNOS content (P = 0.217). SIT and MICT also reduced microvascular endothelial NOX2 content (P < 0.05) and both increased capillary density and capillary-fibre perimeter exchange index (P < 0.05). In parallel, SIT and MICT increased V˙O2 peak (P < 0.05) and whole body insulin sensitivity (P < 0.05), and reduced central artery stiffness (P < 0.05). As no significant differences were observed between SIT and MICT it is concluded that SIT is a time efficient alternative to MICT to improve aerobic capacity, insulin sensitivity and muscle capillarisation and endothelial eNOS/NAD(P)Hoxidase protein ratio in young obese men.