896 resultados para modelagem matemática de autodepuração
Resumo:
Este trabalho apresenta uma modelagem matemática para o processo de aquecimento de um corpo exposto a uma fonte pontual de radiação térmica. O resultado original que permite a solução exata de uma equação diferencial parcial não linear a partir de uma seqüência de problemas lineares também é apresentado. Gráficos gerados com resultados obtidos pelo método de diferenças finitas ilustram a solução do problema proposto.
Resumo:
Nesta dissertação consideramos duas abordagens para o tráfego de veículos: a macroscópica e a microscópica. O tráfego é descrito macroscopicamente por três grandezas físicas interligadas entre si, a saber, a velocidade, a densidade e o fluxo, descrevendo leis de conservação do número de veículos. Há vários modelos para o tráfego macroscópico de veículos. A maioria deles trata o tráfego de veículos como um fluido compressível, traduzindo a lei de conservação de massa para os veículos e requer uma lei de estado para o par velocidade-densidade, estabelecendo uma relação entre eles. Já o modelo descrito pela abordagem microscópica considera os veículos como partículas individuais. Consideramos os modelos da classe "car - following". Estes modelos baseiam-se no princípio de que o (n - 1)-ésimo veículo (denominado de "following-car") acelera em função do estímulo que recebe do n-ésimo veículo. Analisamos a equação de conservação do número de veículos em modelos macroscópicos para fluxo de tráfego. Posteriormente resolvemos esta equação através da linearização do modelo, estudando suas retas características e apresentamos a resolução do problema não linear em domínios limitados utilizando o método das características
Resumo:
2005
Resumo:
Os impactos sobre o meio ambiente, associados ao desenvolvimento de atividades pelo homem em uma bacia hidrográfica, estão fortemente inter-relacionados e têm, a cada dia, se tornado mais evidentes. Esta idéia motiva a concepção de uma gestão integrada dos recursos naturais em várias partes do mundo, inclusive em países em desenvolvimento como o Brasil. Modelos matemáticos de qualidade de água podem ser ferramentas úteis para a tomada de decisão no apoio à gestão de bacias hidrográficas. O planejamento e gestão dos recursos hídricos em um país de grande porte como o Brasil envolve, geralmente, bacias extensas, com um vasto conjunto de elementos naturais e antrópicos. Um modelo de qualidade de água deve permitir a representação da variabilidade espacial da região e, desta forma, a consideração de fontes difusas juntamente com fontes pontuais de poluição. O presente estudo analisou o impacto do desenvolvimento sobre a qualidade da água em uma bacia de grande extensão (bacia do rio Taquari-Antas, RS, com 26.500 km2), considerando a alternativa de aproveitamento hidrelétrico definida no inventário da bacia. Utilizou-se um modelo distribuído de simulação hidrológica e de qualidade de água aplicável principalmente a grandes bacias ( > 1.000 km2), o IPH-MGBq. Este modelo, desenvolvido no IPH, foi ajustado aos dados diários observados de vazão, no seu módulo de quantidade, e de concentração de OD, DBO, nitrogênio e fósforo totais e coliformes fecais, obtidos de coletas trimestrais, no módulo de qualidade. O modelo permite a análise temporal das condições hidrológicas e de qualidade da água de toda a bacia, discretizada por células, com trechos de rios e reservatórios. O modelo apresentou bom desempenho quanto à quantidade (vazões) e quanto aos perfis de concentração dos parâmetros de qualidade de água ao longo do Taquari- Antas, principalmente em termos de valores médios. Foi realizada uma análise de incertezas de alguns parâmetros e variáveis de entrada do modelo com relação à inerente incerteza existente na definição destes elementos. Esta metodologia demonstrou ser uma alternativa adequada à aplicação de modelos distribuídos de qualidade de água em bacias sem dados, sendo que os erros cometidos pelo modelo, em relação aos valores de concentração observados, foram aceitáveis para uma confiança de 95%. A simulação de alguns cenários de desenvolvimento na bacia do Taquari-Antas evidenciou a importância da avaliação conjunta de todos os elementos da bacia (fontes pontuais e difusas de poluição e da implantação de reservatórios) sobre a qualidade de suas águas. O IPH-MGBq mostrou ser uma ferramenta útil para a simulação de cenários de desenvolvimento em grandes bacias como base para a tomada de decisão na gestão dos recursos hídricos.
Resumo:
Discrepancies between classical model predictions and experimental data for deep bed filtration have been reported by various authors. In order to understand these discrepancies, an analytic continuum model for deep bed filtration is proposed. In this model, a filter coefficient is attributed to each distinct retention mechanism (straining, diffusion, gravity interception, etc.). It was shown that these coefficients generally cannot be merged into an effective filter coefficient, as considered in the classical model. Furthermore, the derived analytic solutions for the proposed model were applied for fitting experimental data, and a very good agreement between experimental data and proposed model predictions were obtained. Comparison of the obtained results with empirical correlations allowed identifying the dominant retention mechanisms. In addition, it was shown that the larger the ratio of particle to pore sizes, the more intensive the straining mechanism and the larger the discrepancies between experimental data and classical model predictions. The classical model and proposed model were compared via statistical analysis. The obtained p values allow concluding that the proposed model should be preferred especially when straining plays an important role. In addition, deep bed filtration with finite retention capacity was studied. This work also involves the study of filtration of particles through porous media with a finite capacity of filtration. It was observed, in this case, that is necessary to consider changes in the boundary conditions through time evolution. It was obtained a solution for such a model using different functions of filtration coefficients. Besides that, it was shown how to build a solution for any filtration coefficient. It was seen that, even considering the same filtration coefficient, the classic model and the one here propposed, show different predictions for the concentration of particles retained in the porous media and for the suspended particles at the exit of the media
Resumo:
This is work itself insert in the mathematics education field of the youth and adult education to aim to practitioners of the educational action into the mathematics area performing to with this is teaching kind, adopting to as parameter the Mathematics Molding approach. The motive of the research is to draw up a application proposal of the molding mathematics as teaching and learning geometry alternative in the youth and adult education. The research it develops in three class of the third level (series 5th and 6th) of he youth and adults education in the one school municipal from the Natal outskirts. Its have qualitative nature with participating observation approach, once performing to directly in to research environment as a mathematics teacher of those same classes. We are used questionnaires, lesson notes and analyses of the officials documents as an basis of claim instruments. The results indicates that activity used the mathematic moldings were appreciated the savoir-faire of the student in to knowledge construction process, when search develop to significant learning methods, helping to student build has mathematics connections with other knowledge areas and inside mathematics himself, so much that enlarges your understanding and assist has in your participation in the other socials place, over there propitiate to change in student and teacher posture with relation to mathematic classroom dynamics
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
In this work we present a mathematical and computational modeling of electrokinetic phenomena in electrically charged porous medium. We consider the porous medium composed of three different scales (nanoscopic, microscopic and macroscopic). On the microscopic scale the domain is composed by a porous matrix and a solid phase. The pores are filled with an aqueous phase consisting of ionic solutes fully diluted, and the solid matrix consists of electrically charged particles. Initially we present the mathematical model that governs the electrical double layer in order to quantify the electric potential, electric charge density, ion adsorption and chemical adsorption in nanoscopic scale. Then, we derive the microscopic model, where the adsorption of ions due to the electric double layer and the reactions of protonation/ deprotanaç~ao and zeta potential obtained in modeling nanoscopic arise in microscopic scale through interface conditions in the problem of Stokes and Nerst-Planck equations respectively governing the movement of the aqueous solution and transport of ions. We developed the process of upscaling the problem nano/microscopic using the homogenization technique of periodic structures by deducing the macroscopic model with their respectives cell problems for effective parameters of the macroscopic equations. Considering a clayey porous medium consisting of kaolinite clay plates distributed parallel, we rewrite the macroscopic model in a one-dimensional version. Finally, using a sequential algorithm, we discretize the macroscopic model via the finite element method, along with the interactive method of Picard for the nonlinear terms. Numerical simulations on transient regime with variable pH in one-dimensional case are obtained, aiming computational modeling of the electroremediation process of clay soils contaminated
Resumo:
Este estudo visou analisar as pesquisas em Modelagem Matemática na área da Educação Matemática no Brasil, investigando os trabalhos que adotam esse enfoque, publicados nos anais do 3º. Seminário Internacional de Pesquisa em Educação Matemática, em 2007. A postura assumida é a fenomenológica, e as interpretações são pautadas no movimento hermenêutico, que aponta para uma metacompreensão do tema. Os núcleos de ideias emergem dos invariantes articulados no processo de efetuar convergências, como, por exemplo, a pesquisa que se centra prioritariamente nos modos pelos quais o professor trabalha tópicos de conteúdos matemáticos com o recurso da modelagem. Esse invariante elucidativo pode indicar fragilidades quando os pesquisadores permanecem apenas no como fazer; pode também indicar possibilidades de compreender concepções e sua conversão em práticas desenvolvidas em sala de aula.
Resumo:
O modelo matemático apresentado tem como objetivos: (1) simular as dinâmicas populacionais de um sistema hospedeiro parasitóide de três níveis tróficos composto pelas populações de mosca-do-mediterrâneo Ceratitis capitata (Wiedemann), vespa braconídea parasitóide Diachasmimorpha longicaudata (Ashmed) e frutos cítricos; (2) auxiliar no melhor entendimento dos principais fatores biológicos e ecológicos que regem as interações populacionais e (3) colaborar com programas mais eficientes de controle biológico para o sistema em questão. A metodologia empregada baseou-se na formulação de sistemas de equações de diferenças que descrevessem os processos de interação do sistema trófico. Posteriormente, foram elaboradas resoluções numéricas desses sistemas de equações e sua representação gráfica, utilizando-se o programa computacional Matlab, versão 6.1. Os dados biológicos e ecológicos necessários para a formulação das equações matemáticas foram fornecidos por especialistas em controle de C. capitata e retirados da literatura referente ao controle biológico das moscas-das-frutas em plantações de citros no Brasil, principalmente através da utilização de vespas parasitóides, como D. longicaudata. Os resultados obtidos nas simulações sugerem que o modelo proposto descreve adequadamente o sistema ecológico em questão e permite entender melhor suas principais características biológicas e ecológicas. em conseqüência pode auxiliar na escolha do modo e momento para liberação da vespa parasitóide para o controle mais efetivo de C. capitata.
Resumo:
Este trabalho abordou o resfriamento rápido com ar forçado de morango via simulação numérica. Para tanto, foi empregado o modelo matemático que descreve o processo de transferência de calor, com base na lei de Fourier, escrito em coordenadas esféricas e simplificado para descrever o processo unidimensional. A resolução da equação expressa pelo modelo matemático deu-se por meio da implementação de um algoritmo, fundamentado no esquema explícito do método numérico das diferenças finitas, executado no ambiente de computação científica MATLAB 6.1. A validação do modelo matemático foi realizada a partir da comparação de dados teóricos com dados obtidos num experimento, no qual morangos foram resfriados com ar forçado. Os resultados mostraram que esse tipo de investigação para a determinação do coeficiente de transferência de calor por convecção é promissora como ferramenta no suporte à decisão do uso ou desenvolvimento de equipamentos na área de resfriamento rápido de frutos esféricos com ar forçado.
Resumo:
Esse artigo é um ensaio teórico que tem como objetivo apresentar, a partir de uma revisão da literatura sobre Modelagem Matemática, como algumas tendências em Educação e em Educação Matemática são tratadas em pesquisas acadêmicas, assim como salientar alguns dos principais suportes teóricos utilizados nesses estudos, a saber, Educação Matemática Crítica, Interesse, Interdisciplinaridade e Contextualização. Um panorama das pesquisas realizadas em Modelagem no território nacional, relacionadas a outras tendências educacionais, é traçado, do mesmo modo que alguns dos principais referenciais teóricos abordados pela maioria dos autores das mesmas são apresentados. São apontadas perspectivas futuras de pesquisas, e é destacada a necessidade da continuidade do debate teórico acerca dessas temáticas.
Resumo:
Neste artigo construímos um entrelaçamento teórico-filosófico que tem como objetivo discutir a relação entre Modelagem Matemática e realidade do mundo cibernético. em particular, essa abrangência da realidade é evidenciada como um possível vetor de virtualização, isto é, como um aspecto que pode influenciar o modo como a problemática que envolve uma determinada situação ou entidade é compreendida. Para tanto, fazemos uma associação entre Modelagem Matemática e as transformações que envolvem os modos de ser denotados por real, possível, atual e virtual, tendo como base ilustrativa as quatro causas aristotélicas. Complementando essa associação, assumimos uma concepção de problema que permite uma consolidação entre as relações estabelecidas e, também, uma concepção de realidade que entende o mundo cibernético como uma de suas dimensões. Por fim, apresentamos um exemplo de Modelagem Matemática ocorrido em sala de aula, que visa caracterizar a realidade do mundo cibernético como um vetor de virtualização.