899 resultados para model-based object recognition


Relevância:

100.00% 100.00%

Publicador:

Resumo:

We describe a model-based objects recognition system which is part of an image interpretation system intended to assist autonomous vehicles navigation. The system is intended to operate in man-made environments. Behavior-based navigation of autonomous vehicles involves the recognition of navigable areas and the potential obstacles. The recognition system integrates color, shape and texture information together with the location of the vanishing point. The recognition process starts from some prior scene knowledge, that is, a generic model of the expected scene and the potential objects. The recognition system constitutes an approach where different low-level vision techniques extract a multitude of image descriptors which are then analyzed using a rule-based reasoning system to interpret the image content. This system has been implemented using CEES, the C++ embedded expert system shell developed in the Systems Engineering and Automatic Control Laboratory (University of Girona) as a specific rule-based problem solving tool. It has been especially conceived for supporting cooperative expert systems, and uses the object oriented programming paradigm

Relevância:

100.00% 100.00%

Publicador:

Resumo:

We describe a model-based objects recognition system which is part of an image interpretation system intended to assist autonomous vehicles navigation. The system is intended to operate in man-made environments. Behavior-based navigation of autonomous vehicles involves the recognition of navigable areas and the potential obstacles. The recognition system integrates color, shape and texture information together with the location of the vanishing point. The recognition process starts from some prior scene knowledge, that is, a generic model of the expected scene and the potential objects. The recognition system constitutes an approach where different low-level vision techniques extract a multitude of image descriptors which are then analyzed using a rule-based reasoning system to interpret the image content. This system has been implemented using CEES, the C++ embedded expert system shell developed in the Systems Engineering and Automatic Control Laboratory (University of Girona) as a specific rule-based problem solving tool. It has been especially conceived for supporting cooperative expert systems, and uses the object oriented programming paradigm

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Behavior-based navigation of autonomous vehicles requires the recognition of the navigable areas and the potential obstacles. In this paper we describe a model-based objects recognition system which is part of an image interpretation system intended to assist the navigation of autonomous vehicles that operate in industrial environments. The recognition system integrates color, shape and texture information together with the location of the vanishing point. The recognition process starts from some prior scene knowledge, that is, a generic model of the expected scene and the potential objects. The recognition system constitutes an approach where different low-level vision techniques extract a multitude of image descriptors which are then analyzed using a rule-based reasoning system to interpret the image content. This system has been implemented using a rule-based cooperative expert system

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Two formulations of model-based object recognition are described. MAP Model Matching evaluates joint hypotheses of match and pose, while Posterior Marginal Pose Estimation evaluates the pose only. Local search in pose space is carried out with the Expectation--Maximization (EM) algorithm. Recognition experiments are described where the EM algorithm is used to refine and evaluate pose hypotheses in 2D and 3D. Initial hypotheses for the 2D experiments were generated by a simple indexing method: Angle Pair Indexing. The Linear Combination of Views method of Ullman and Basri is employed as the projection model in the 3D experiments.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Behavior-based navigation of autonomous vehicles requires the recognition of the navigable areas and the potential obstacles. In this paper we describe a model-based objects recognition system which is part of an image interpretation system intended to assist the navigation of autonomous vehicles that operate in industrial environments. The recognition system integrates color, shape and texture information together with the location of the vanishing point. The recognition process starts from some prior scene knowledge, that is, a generic model of the expected scene and the potential objects. The recognition system constitutes an approach where different low-level vision techniques extract a multitude of image descriptors which are then analyzed using a rule-based reasoning system to interpret the image content. This system has been implemented using a rule-based cooperative expert system

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Numerous psychophysical experiments have shown an important role for attentional modulations in vision. Behaviorally, allocation of attention can improve performance in object detection and recognition tasks. At the neural level, attention increases firing rates of neurons in visual cortex whose preferred stimulus is currently attended to. However, it is not yet known how these two phenomena are linked, i.e., how the visual system could be "tuned" in a task-dependent fashion to improve task performance. To answer this question, we performed simulations with the HMAX model of object recognition in cortex [45]. We modulated firing rates of model neurons in accordance with experimental results about effects of feature-based attention on single neurons and measured changes in the model's performance in a variety of object recognition tasks. It turned out that recognition performance could only be improved under very limited circumstances and that attentional influences on the process of object recognition per se tend to display a lack of specificity or raise false alarm rates. These observations lead us to postulate a new role for the observed attention-related neural response modulations.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Three experiments assessed the development of children's part and configural (part-relational) processing in object recognition during adolescence. In total, 312 school children aged 7-16 years and 80 adults were tested in 3-alternative forced choice (3-AFC) tasks. They judged the correct appearance of upright and inverted presented familiar animals, artifacts, and newly learned multipart objects, which had been manipulated either in terms of individual parts or part relations. Manipulation of part relations was constrained to either metric (animals, artifacts, and multipart objects) or categorical (multipart objects only) changes. For animals and artifacts, even the youngest children were close to adult levels for the correct recognition of an individual part change. By contrast, it was not until 11-12 years of age that they achieved similar levels of performance with regard to altered metric part relations. For the newly learned multipart objects, performance was equivalent throughout the tested age range for upright presented stimuli in the case of categorical part-specific and part-relational changes. In the case of metric manipulations, the results confirmed the data pattern observed for animals and artifacts. Together, the results provide converging evidence, with studies of face recognition, for a surprisingly late consolidation of configural-metric relative to part-based object recognition.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Background. Previous research has shown that object recognition may develop well into late childhood and adolescence. The present study extends that research and reveals novel differences in holistic and analytic recognition performance in 7-12 year olds compared to that seen in adults. We interpret our data within a hybrid model of object recognition that proposes two parallel routes for recognition (analytic vs. holistic) modulated by attention. Methodology / Principal Findings. Using a repetition-priming paradigm, we found in Experiment 1 that children showed no holistic priming, but only analytic priming. Given that holistic priming might be thought to be more ‘primitive’, we confirmed in Experiment 2 that our surprising finding was not because children’s analytic recognition was merely a result of name repetition. Conclusions / Significance. Our results suggest a developmental primacy of analytic object recognition. By contrast, holistic object recognition skills appear to emerge with a much more protracted trajectory extending into late adolescence.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Four experiments with unfamiliar objects examined the remarkably late consolidation of part-relational relative to part-based object recognition (Jüttner, Wakui, Petters, Kaur, & Davidoff, 2013). Our results indicate a particularly protracted developmental trajectory for the processing of metric part relations. Schoolchildren aged 7 to 14 years and adults were tested in 3-Alternative-Forced-Choice tasks to judge the correct appearance of upright and inverted newly learned multipart objects that had been manipulated in terms of individual parts or part relations. Experiment 1 showed that even the youngest tested children were close to adult levels of performance for recognizing categorical changes of individual parts and relative part position. By contrast, Experiment 2 demonstrated that performance for detecting metric changes of relative part position was distinctly reduced in young children compared with recognizing metric changes of individual parts, and did not approach the latter until 11 to 12 years. A similar developmental dissociation was observed in Experiment 3, which contrasted the detection of metric relative-size changes and metric part changes. Experiment 4 showed that manipulations of metric size that were perceived as part (rather than part-relational) changes eliminated this dissociation. Implications for theories of object recognition and similarities to the development of face perception are discussed. © 2014 American Psychological Association.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Previous research (e.g., Jüttner et al, 2013, Developmental Psychology, 49, 161-176) has shown that object recognition may develop well into late childhood and adolescence. The present study extends that research and reveals novel di erences in holistic and analytic recognition performance in 7-11 year olds compared to that seen in adults. We interpret our data within Hummel’s hybrid model of object recognition (Hummel, 2001, Visual Cognition, 8, 489-517) that proposes two parallel routes for recognition (analytic vs. holistic) modulated by attention. Using a repetition-priming paradigm, we found in Experiment 1 that children showed no holistic priming, but only analytic priming. Given that holistic priming might be thought to be more ‘primitive’, we confirmed in Experiment 2 that our surprising finding was not because children’s analytic recognition was merely a result of name repetition. Our results suggest a developmental primacy of analytic object recognition. By contrast, holistic object recognition skills appear to emerge with a much more protracted trajectory extending into late adolescence

Relevância:

100.00% 100.00%

Publicador:

Resumo:

This thesis describes the development of a model-based vision system that exploits hierarchies of both object structure and object scale. The focus of the research is to use these hierarchies to achieve robust recognition based on effective organization and indexing schemes for model libraries. The goal of the system is to recognize parameterized instances of non-rigid model objects contained in a large knowledge base despite the presence of noise and occlusion. Robustness is achieved by developing a system that can recognize viewed objects that are scaled or mirror-image instances of the known models or that contain components sub-parts with different relative scaling, rotation, or translation than in models. The approach taken in this thesis is to develop an object shape representation that incorporates a component sub-part hierarchy- to allow for efficient and correct indexing into an automatically generated model library as well as for relative parameterization among sub-parts, and a scale hierarchy- to allow for a general to specific recognition procedure. After analysis of the issues and inherent tradeoffs in the recognition process, a system is implemented using a representation based on significant contour curvature changes and a recognition engine based on geometric constraints of feature properties. Examples of the system's performance are given, followed by an analysis of the results. In conclusion, the system's benefits and limitations are presented.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

A persistent issue of debate in the area of 3D object recognition concerns the nature of the experientially acquired object models in the primate visual system. One prominent proposal in this regard has expounded the use of object centered models, such as representations of the objects' 3D structures in a coordinate frame independent of the viewing parameters [Marr and Nishihara, 1978]. In contrast to this is another proposal which suggests that the viewing parameters encountered during the learning phase might be inextricably linked to subsequent performance on a recognition task [Tarr and Pinker, 1989; Poggio and Edelman, 1990]. The 'object model', according to this idea, is simply a collection of the sample views encountered during training. Given that object centered recognition strategies have the attractive feature of leading to viewpoint independence, they have garnered much of the research effort in the field of computational vision. Furthermore, since human recognition performance seems remarkably robust in the face of imaging variations [Ellis et al., 1989], it has often been implicitly assumed that the visual system employs an object centered strategy. In the present study we examine this assumption more closely. Our experimental results with a class of novel 3D structures strongly suggest the use of a view-based strategy by the human visual system even when it has the opportunity of constructing and using object-centered models. In fact, for our chosen class of objects, the results seem to support a stronger claim: 3D object recognition is 2D view-based.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Many Object recognition techniques perform some flavour of point pattern matching between a model and a scene. Such points are usually selected through a feature detection algorithm that is robust to a class of image transformations and a suitable descriptor is computed over them in order to get a reliable matching. Moreover, some approaches take an additional step by casting the correspondence problem into a matching between graphs defined over feature points. The motivation is that the relational model would add more discriminative power, however the overall effectiveness strongly depends on the ability to build a graph that is stable with respect to both changes in the object appearance and spatial distribution of interest points. In fact, widely used graph-based representations, have shown to suffer some limitations, especially with respect to changes in the Euclidean organization of the feature points. In this paper we introduce a technique to build relational structures over corner points that does not depend on the spatial distribution of the features. © 2012 ICPR Org Committee.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

In this paper a computer program to model and support product design is presented. The product is represented through a hierarchical structure that allows the user to navigate across the product’s components, and it aims at facilitating each step of the detail design process. A graphical interface was also developed, which shows visually to the user the contents of the product structure. Features are used as building blocks for the parts that compose the product, and object-oriented methodology was used as a means to implement the product structure. Finally, an expert system was also implemented, whose knowledge base rules help the user design a product that meets design and manufacturing requirements.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

A key problem in object recognition is selection, namely, the problem of identifying regions in an image within which to start the recognition process, ideally by isolating regions that are likely to come from a single object. Such a selection mechanism has been found to be crucial in reducing the combinatorial search involved in the matching stage of object recognition. Even though selection is of help in recognition, it has largely remained unsolved because of the difficulty in isolating regions belonging to objects under complex imaging conditions involving occlusions, changing illumination, and object appearances. This thesis presents a novel approach to the selection problem by proposing a computational model of visual attentional selection as a paradigm for selection in recognition. In particular, it proposes two modes of attentional selection, namely, attracted and pay attention modes as being appropriate for data and model-driven selection in recognition. An implementation of this model has led to new ways of extracting color, texture and line group information in images, and their subsequent use in isolating areas of the scene likely to contain the model object. Among the specific results in this thesis are: a method of specifying color by perceptual color categories for fast color region segmentation and color-based localization of objects, and a result showing that the recognition of texture patterns on model objects is possible under changes in orientation and occlusions without detailed segmentation. The thesis also presents an evaluation of the proposed model by integrating with a 3D from 2D object recognition system and recording the improvement in performance. These results indicate that attentional selection can significantly overcome the computational bottleneck in object recognition, both due to a reduction in the number of features, and due to a reduction in the number of matches during recognition using the information derived during selection. Finally, these studies have revealed a surprising use of selection, namely, in the partial solution of the pose of a 3D object.