966 resultados para model collection


Relevância:

70.00% 70.00%

Publicador:

Resumo:

Empirical evidence shows that repositories of business process models used in industrial practice contain significant amounts of duplication. This duplication arises for example when the repository covers multiple variants of the same processes or due to copy-pasting. Previous work has addressed the problem of efficiently retrieving exact clones that can be refactored into shared subprocess models. This article studies the broader problem of approximate clone detection in process models. The article proposes techniques for detecting clusters of approximate clones based on two well-known clustering algorithms: DBSCAN and Hi- erarchical Agglomerative Clustering (HAC). The article also defines a measure of standardizability of an approximate clone cluster, meaning the potential benefit of replacing the approximate clones with a single standardized subprocess. Experiments show that both techniques, in conjunction with the proposed standardizability measure, accurately retrieve clusters of approximate clones that originate from copy-pasting followed by independent modifications to the copied fragments. Additional experiments show that both techniques produce clusters that match those produced by human subjects and that are perceived to be standardizable.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

Many organizations realize that increasing amounts of data (“Big Data”) need to be dealt with intelligently in order to compete with other organizations in terms of efficiency, speed and services. The goal is not to collect as much data as possible, but to turn event data into valuable insights that can be used to improve business processes. However, data-oriented analysis approaches fail to relate event data to process models. At the same time, large organizations are generating piles of process models that are disconnected from the real processes and information systems. In this chapter we propose to manage large collections of process models and event data in an integrated manner. Observed and modeled behavior need to be continuously compared and aligned. This results in a “liquid” business process model collection, i.e. a collection of process models that is in sync with the actual organizational behavior. The collection should self-adapt to evolving organizational behavior and incorporate relevant execution data (e.g. process performance and resource utilization) extracted from the logs, thereby allowing insightful reports to be produced from factual organizational data.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Nowadays, business process management is an important approach for managing organizations from an operational perspective. As a consequence, it is common to see organizations develop collections of hundreds or even thousands of business process models. Such large collections of process models bring new challenges and provide new opportunities, as the knowledge that they encapsulate requires to be properly managed. Therefore, a variety of techniques for managing large collections of business process models is being developed. The goal of this paper is to provide an overview of the management techniques that currently exist, as well as the open research challenges that they pose.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Automated process discovery techniques aim at extracting process models from information system logs. Existing techniques in this space are effective when applied to relatively small or regular logs, but generate spaghetti-like and sometimes inaccurate models when confronted to logs with high variability. In previous work, trace clustering has been applied in an attempt to reduce the size and complexity of automatically discovered process models. The idea is to split the log into clusters and to discover one model per cluster. This leads to a collection of process models – each one representing a variant of the business process – as opposed to an all-encompassing model. Still, models produced in this way may exhibit unacceptably high complexity and low fitness. In this setting, this paper presents a two-way divide-and-conquer process discovery technique, wherein the discovered process models are split on the one hand by variants and on the other hand hierarchically using subprocess extraction. Splitting is performed in a controlled manner in order to achieve user-defined complexity or fitness thresholds. Experiments on real-life logs show that the technique produces collections of models substantially smaller than those extracted by applying existing trace clustering techniques, while allowing the user to control the fitness of the resulting models.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Behavioral models capture operational principles of real-world or designed systems. Formally, each behavioral model defines the state space of a system, i.e., its states and the principles of state transitions. Such a model is the basis for analysis of the system’s properties. In practice, state spaces of systems are immense, which results in huge computational complexity for their analysis. Behavioral models are typically described as executable graphs, whose execution semantics encodes a state space. The structure theory of behavioral models studies the relations between the structure of a model and the properties of its state space. In this article, we use the connectivity property of graphs to achieve an efficient and extensive discovery of the compositional structure of behavioral models; behavioral models get stepwise decomposed into components with clear structural characteristics and inter-component relations. At each decomposition step, the discovered compositional structure of a model is used for reasoning on properties of the whole state space of the system. The approach is exemplified by means of a concrete behavioral model and verification criterion. That is, we analyze workflow nets, a well-established tool for modeling behavior of distributed systems, with respect to the soundness property, a basic correctness property of workflow nets. Stepwise verification allows the detection of violations of the soundness property by inspecting small portions of a model, thereby considerably reducing the amount of work to be done to perform soundness checks. Besides formal results, we also report on findings from applying our approach to an industry model collection.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Business Process Management (BPM) (Dumas et al. 2013) investigates how organizations function and can be improved on the basis of their business processes. The starting point for BPM is that organizational performance is a function of process performance. Thus, BPM proposes a set of methods, techniques and tools to discover, analyze, implement, monitor and control business processes, with the ultimate goal of improving these processes. Most importantly, BPM is not just an organizational management discipline. BPM also studies how technology, and particularly information technology, can effectively support the process improvement effort. In the past two decades the field of BPM has been the focus of extensive research, which spans an increasingly growing scope and advances technology in various directions. The main international forum for state-of-the-art research in this field is the International Conference on Business Process Management, or “BPM” for short—an annual meeting of the aca ...

Relevância:

40.00% 40.00%

Publicador:

Resumo:

The purpose of this article is to update and build on the approximate 10,000 item collection of the Harbor Branch Oceanographic Institute Library. This article will present a history of Harbor Branch and its library, and a literature review, outlining the collection development methods of other marine science libraries and academic libraries. The article will relate brief histories of three marine science libraries. A comparative table is constructed to compare Harbor Branch Library with three marine science libraries. The methodology, or how the table was created, is explained. The comparative table will be shown and analyzed, and the results of the table discussed. Finally, some recommendations for improvement of the Harbor Branch Library will be presented.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

In order to reduce serious health incidents, individuals with high risks need to be identified as early as possible so that effective intervention and preventive care can be provided. This requires regular and efficient assessments of risk within communities that are the first point of contacts for individuals. Clinical Decision Support Systems CDSSs have been developed to help with the task of risk assessment, however such systems and their underpinning classification models are tailored towards those with clinical expertise. Communities where regular risk assessments are required lack such expertise. This paper presents the continuation of GRiST research team efforts to disseminate clinical expertise to communities. Based on our earlier published findings, this paper introduces the framework and skeleton for a data collection and risk classification model that evaluates data redundancy in real-time, detects the risk-informative data and guides the risk assessors towards collecting those data. By doing so, it enables non-experts within the communities to conduct reliable Mental Health risk triage.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The high degree of variability and inconsistency in cash flow study usage by property professionals demands improvement in knowledge and processes. Until recently limited research was being undertaken on the use of cash flow studies in property valuations but the growing acceptance of this approach for major investment valuations has resulted in renewed interest in this topic. Studies on valuation variations identify data accuracy, model consistency and bias as major concerns. In cash flow studies there are practical problems with the input data and the consistency of the models. This study will refer to the recent literature and identify the major factors in model inconsistency and data selection. A detailed case study will be used to examine the effects of changes in structure and inputs. The key variable inputs will be identified and proposals developed to improve the selection process for these key variables. The variables will be selected with the aid of sensitivity studies and alternative ways of quantifying the key variables explained. The paper recommends, with reservations, the use of probability profiles of the variables and the incorporation of this data in simulation exercises. The use of Monte Carlo simulation is demonstrated and the factors influencing the structure of the probability distributions of the key variables are outline. This study relates to ongoing research into functional performance of commercial property within an Australian Cooperative Research Centre.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Abstract Maintaining the health of a construction project can help to achieve the desired outcomes of the project. An analogy is drawn to the medical process of a human health check where it is possible to broadly diagnose health in terms of a number of key areas such as blood pressure or cholesterol level. Similarly it appears possible to diagnose the current health of a construction project in terms of a number of Critical Success Factors (CSFs) and key performance indicators (KPIs). The medical analogy continues into the detailed investigation phase where a number of contributing factors are evaluated to identify possible causes of ill health and through the identification of potential remedies to return the project to the desired level of health. This paper presents the development of a model that diagnoses the immediate health of a construction project, investigates the factors which appear to be causing the ill health and proposes a remedy to return the project to good health. The proposed model uses the well-established continuous improvement management model (Deming, 1986) to adapt the process of human physical health checking to construction project health.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

An earlier CRC-CI project on ‘automatic estimating’ (AE) has shown the key benefit of model-based design methodologies in building design and construction to be the provision of timely quantitative cost evaluations. Furthermore, using AE during design improves design options, and results in improved design turn-around times, better design quality and/or lower costs. However, AEs for civil engineering structures do not exist; and research partners in the CRC-CI expressed interest in exploring the development of such a process. This document reports on these investigations. The central objective of the study was to evaluate the benefits and costs of developing an AE for concrete civil engineering works. By studying existing documents and through interviews with design engineers, contractors and estimators, we have established that current civil engineering practices (mainly roads/bridges) do not use model-based planning/design. Drawings are executed in 2D and only completed at the end of lengthy planning/design project management lifecycle stages. We have also determined that estimating plays two important, but different roles. The first is part of project management (which we have called macro level estimating). Estimating in this domain sets project budgets, controls quality delivery and contains costs. The second role is estimating during planning/design (micro level estimating). The difference between the two roles is that the former is performed at the end of various lifecycle stages, whereas the latter is performed at any suitable time during planning/design.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

This project is an extension of a previous CRC project (220-059-B) which developed a program for life prediction of gutters in Queensland schools. A number of sources of information on service life of metallic building components were formed into databases linked to a Case-Based Reasoning Engine which extracted relevant cases from each source.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

This project is an extension of a previous CRC project (220-059-B) which developed a program for life prediction of gutters in Queensland schools. A number of sources of information on service life of metallic building components were formed into databases linked to a Case-Based Reasoning Engine which extracted relevant cases from each source.