904 resultados para modal parameters
Resumo:
[EN]The aim of this work is looking into the possibility of capturing the change in the modal properties (natural frequencies, modal shapes and modal damping ratio) of plain concrete elements due to the presence of cracked areas by using a simple continuum damage zone numerical model.
Resumo:
This paper presents a time-domain stochastic system identification method based on maximum likelihood estimation (MLE) with the expectation maximization (EM) algorithm. The effectiveness of this structural identification method is evaluated through numerical simulation in the context of the ASCE benchmark problem on structural health monitoring. The benchmark structure is a four-story, two-bay by two-bay steel-frame scale model structure built in the Earthquake Engineering Research Laboratory at the University of British Columbia, Canada. This paper focuses on Phase I of the analytical benchmark studies. A MATLAB-based finite element analysis code obtained from the IASC-ASCE SHM Task Group web site is used to calculate the dynamic response of the prototype structure. A number of 100 simulations have been made using this MATLAB-based finite element analysis code in order to evaluate the proposed identification method. There are several techniques to realize system identification. In this work, stochastic subspace identification (SSI)method has been used for comparison. SSI identification method is a well known method and computes accurate estimates of the modal parameters. The principles of the SSI identification method has been introduced in the paper and next the proposed MLE with EM algorithm has been explained in detail. The advantages of the proposed structural identification method can be summarized as follows: (i) the method is based on maximum likelihood, that implies minimum variance estimates; (ii) EM is a computational simpler estimation procedure than other optimization algorithms; (iii) estimate more parameters than SSI, and these estimates are accurate. On the contrary, the main disadvantages of the method are: (i) EM algorithm is an iterative procedure and it consumes time until convergence is reached; and (ii) this method needs starting values for the parameters. Modal parameters (eigenfrequencies, damping ratios and mode shapes) of the benchmark structure have been estimated using both the SSI method and the proposed MLE + EM method. The numerical results show that the proposed method identifies eigenfrequencies, damping ratios and mode shapes reasonably well even in the presence of 10% measurement noises. These modal parameters are more accurate than the SSI estimated modal parameters.
Resumo:
Computing the modal parameters of structural systems often requires processing data from multiple non-simultaneously recorded setups of sensors. These setups share some sensors in common, the so-called reference sensors, which are fixed for all measurements, while the other sensors change their position from one setup to the next. One possibility is to process the setups separately resulting in different modal parameter estimates for each setup. Then, the reference sensors are used to merge or glue the different parts of the mode shapes to obtain global mode shapes, while the natural frequencies and damping ratios are usually averaged. In this paper we present a new state space model that processes all setups at once. The result is that the global mode shapes are obtained automatically, and only a value for the natural frequency and damping ratio of each mode is estimated. We also investigate the estimation of this model using maximum likelihood and the Expectation Maximization algorithm, and apply this technique to simulated and measured data corresponding to different structures.
Resumo:
In Operational Modal Analysis of structures we often have multiple time history records of vibrations measured at different time instants. This work presents a procedure for estimating the modal parameters of the structure processing all the records, that is, using all available information to obtain a single estimate of the modal parameters. The method uses Maximum Likelihood Estimation and the Expectation Maximization algorithm. Finally, it has been applied to various problems for both simulated and real structures and the results show the advantage of the joint analysis proposed.
Resumo:
Trabalho Final de Mestrado elaborado no Laboratório de Engenharia Civil (LNEC) para obtenção do grau de Mestre em Engenharia Civil pelo Instituto Superior de Engenharia de Lisboa no âmbito do protocolo de cooperação entre o ISEL e o LNEC
Resumo:
Trabalho Final de Mestrado elaborado no Laboratório Nacional de Engenharia Civil (LNEC) para a obtenção do grau de Mestre em Engenharia Civil pelo Instituto Superior de Engenharia de Lisboa no âmbito do protocolo de Cooperação entre o ISEL e o LNEC
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
A metodologia tradicional de identificação de parâmetros na análise modal de estruturas é realizada a partir de sinais medidos de força de entrada e de movimento de resposta da estrutura em condições laboratoriais controladas. Entretanto, quando é necessária a obtenção dos parâmetros modais de estruturas de máquinas em operação, as condições para controlar e medir a excitação nestas situações impossibilita a realização da análise modal tradicional. Neste caso, o teste modal é realizado utilizando somente dados de resposta do sistema. A Análise Modal Operacional (AMO) é um método de extração modal em que nenhuma excitação artificial necessita ser aplicada ao sistema, utilizando-se a própria excitação operacional como entrada para medição da resposta do sistema. A técnica clássica de Análise Modal Operacional NExT considera, para isso, que a excitação operacional do sistema seja um ruído branco. Esta técnica faz a consideração de que as funções de correlação obtidas de estruturas podem ser consideradas como funções de resposta ao impulso e então métodos tradicionais de identificação modal no domínio do tempo podem ser empregados. Entretanto, caso a excitação operacional contenha componentes harmônicos que se sobressaiam, estes podem ser confundidos como modos naturais do sistema. Neste trabalho é demonstrada que através da função densidade de probabilidade da banda estreita contendo o pico de um modo, é possível identifica-lo como natural ou operacional (proveniente da excitação operacional da estrutura). É apresentada também uma modificação no método de identificação modal Exponencial Complexa Mínimos Quadrados (LSCE), passando a considerar sinais harmônicos de freqüências conhecidas presentes na excitação operacional, em um ensaio utilizando a técnica NExT. Para validação desses métodos, utiliza-se um modelo teórico de parâmetros modais conhecidos analiticamente e como estudo de caso experimental, um sistema formado por uma viga bi-apoiada suportando um motor elétrico com desbalanceamento de massa.
Resumo:
The article discusses a proposal of displacement measurement using a unique digital camera aiming at to exploit its feasibility for Modal Analysis applications. The proposal discusses a non-contact measuring approach able to measure multiple points simultaneously by using a unique digital camera. A modal analysis of a reduced scale lab building structure based only at the responses of the structure measured with the camera is presented. It focuses at the feasibility of using a simple ordinary camera for performing the output only modal analysis of structures and its advantage. The modal parameters of the structure are estimated from the camera data and also by using ordinary experimental modal analysis based on the Frequency Response Function (FRF) obtained by using the usual sensors like accelerometer and force cell. The comparison of the both analysis showed that the technique is promising noncontact measuring tool relatively simple and effective to be used in structural modal analysis
Resumo:
Among the experimental methods commonly used to define the behaviour of a full scale system, dynamic tests are the most complete and efficient procedures. A dynamic test is an experimental process, which would define a set of characteristic parameters of the dynamic behaviour of the system, such as natural frequencies of the structure, mode shapes and the corresponding modal damping values associated. An assessment of these modal characteristics can be used both to verify the theoretical assumptions of the project, to monitor the performance of the structural system during its operational use. The thesis is structured in the following chapters: The first introductive chapter recalls some basic notions of dynamics of structure, focusing the discussion on the problem of systems with multiply degrees of freedom (MDOF), which can represent a generic real system under study, when it is excited with harmonic force or in free vibration. The second chapter is entirely centred on to the problem of dynamic identification process of a structure, if it is subjected to an experimental test in forced vibrations. It first describes the construction of FRF through classical FFT of the recorded signal. A different method, also in the frequency domain, is subsequently introduced; it allows accurately to compute the FRF using the geometric characteristics of the ellipse that represents the direct input-output comparison. The two methods are compared and then the attention is focused on some advantages of the proposed methodology. The third chapter focuses on the study of real structures when they are subjected to experimental test, where the force is not known, like in an ambient or impact test. In this analysis we decided to use the CWT, which allows a simultaneous investigation in the time and frequency domain of a generic signal x(t). The CWT is first introduced to process free oscillations, with excellent results both in terms of frequencies, dampings and vibration modes. The application in the case of ambient vibrations defines accurate modal parameters of the system, although on the damping some important observations should be made. The fourth chapter is still on the problem of post processing data acquired after a vibration test, but this time through the application of discrete wavelet transform (DWT). In the first part the results obtained by the DWT are compared with those obtained by the application of CWT. Particular attention is given to the use of DWT as a tool for filtering the recorded signal, in fact in case of ambient vibrations the signals are often affected by the presence of a significant level of noise. The fifth chapter focuses on another important aspect of the identification process: the model updating. In this chapter, starting from the modal parameters obtained from some environmental vibration tests, performed by the University of Porto in 2008 and the University of Sheffild on the Humber Bridge in England, a FE model of the bridge is defined, in order to define what type of model is able to capture more accurately the real dynamic behaviour of the bridge. The sixth chapter outlines the necessary conclusions of the presented research. They concern the application of a method in the frequency domain in order to evaluate the modal parameters of a structure and its advantages, the advantages in applying a procedure based on the use of wavelet transforms in the process of identification in tests with unknown input and finally the problem of 3D modeling of systems with many degrees of freedom and with different types of uncertainty.
Resumo:
This paper presents the Expectation Maximization algorithm (EM) applied to operational modal analysis of structures. The EM algorithm is a general-purpose method for maximum likelihood estimation (MLE) that in this work is used to estimate state space models. As it is well known, the MLE enjoys some optimal properties from a statistical point of view, which make it very attractive in practice. However, the EM algorithm has two main drawbacks: its slow convergence and the dependence of the solution on the initial values used. This paper proposes two different strategies to choose initial values for the EM algorithm when used for operational modal analysis: to begin with the parameters estimated by Stochastic Subspace Identification method (SSI) and to start using random points. The effectiveness of the proposed identification method has been evaluated through numerical simulation and measured vibration data in the context of a benchmark problem. Modal parameters (natural frequencies, damping ratios and mode shapes) of the benchmark structure have been estimated using SSI and the EM algorithm. On the whole, the results show that the application of the EM algorithm starting from the solution given by SSI is very useful to identify the vibration modes of a structure, discarding the spurious modes that appear in high order models and discovering other hidden modes. Similar results are obtained using random starting values, although this strategy allows us to analyze the solution of several starting points what overcome the dependence on the initial values used.
Resumo:
The estimation of modal parameters of a structure from ambient measurements has attracted the attention of many researchers in the last years. The procedure is now well established and the use of state space models, stochastic system identification methods and stabilization diagrams allows to identify the modes of the structure. In this paper the contribution of each identified mode to the measured vibration is discussed. This modal contribution is computed using the Kalman filter and it is an indicator of the importance of the modes. Also the variation of the modal contribution with the order of the model is studied. This analysis suggests selecting the order for the state space model as the order that includes the modes with higher contribution. The order obtained using this method is compared to those obtained using other well known methods, like Akaike criteria for time series or the singular values of the weighted projection matrix in the Stochastic Subspace Identification method. Finally, both simulated and measured vibration data are used to show the practicability of the derived technique. Finally, it is important to remark that the method can be used with any identification method working in the state space model.
Resumo:
The modal analysis of a structural system consists on computing its vibrational modes. The experimental way to estimate these modes requires to excite the system with a measured or known input and then to measure the system output at different points using sensors. Finally, system inputs and outputs are used to compute the modes of vibration. When the system refers to large structures like buildings or bridges, the tests have to be performed in situ, so it is not possible to measure system inputs such as wind, traffic, . . .Even if a known input is applied, the procedure is usually difficult and expensive, and there are still uncontrolled disturbances acting at the time of the test. These facts led to the idea of computing the modes of vibration using only the measured vibrations and regardless of the inputs that originated them, whether they are ambient vibrations (wind, earthquakes, . . . ) or operational loads (traffic, human loading, . . . ). This procedure is usually called Operational Modal Analysis (OMA), and in general consists on to fit a mathematical model to the measured data assuming the unobserved excitations are realizations of a stationary stochastic process (usually white noise processes). Then, the modes of vibration are computed from the estimated model. The first issue investigated in this thesis is the performance of the Expectation- Maximization (EM) algorithm for the maximum likelihood estimation of the state space model in the field of OMA. The algorithm is described in detail and it is analysed how to apply it to vibration data. After that, it is compared to another well known method, the Stochastic Subspace Identification algorithm. The maximum likelihood estimate enjoys some optimal properties from a statistical point of view what makes it very attractive in practice, but the most remarkable property of the EM algorithm is that it can be used to address a wide range of situations in OMA. In this work, three additional state space models are proposed and estimated using the EM algorithm: • The first model is proposed to estimate the modes of vibration when several tests are performed in the same structural system. Instead of analyse record by record and then compute averages, the EM algorithm is extended for the joint estimation of the proposed state space model using all the available data. • The second state space model is used to estimate the modes of vibration when the number of available sensors is lower than the number of points to be tested. In these cases it is usual to perform several tests changing the position of the sensors from one test to the following (multiple setups of sensors). Here, the proposed state space model and the EM algorithm are used to estimate the modal parameters taking into account the data of all setups. • And last, a state space model is proposed to estimate the modes of vibration in the presence of unmeasured inputs that cannot be modelled as white noise processes. In these cases, the frequency components of the inputs cannot be separated from the eigenfrequencies of the system, and spurious modes are obtained in the identification process. The idea is to measure the response of the structure corresponding to different inputs; then, it is assumed that the parameters common to all the data correspond to the structure (modes of vibration), and the parameters found in a specific test correspond to the input in that test. The problem is solved using the proposed state space model and the EM algorithm. Resumen El análisis modal de un sistema estructural consiste en calcular sus modos de vibración. Para estimar estos modos experimentalmente es preciso excitar el sistema con entradas conocidas y registrar las salidas del sistema en diferentes puntos por medio de sensores. Finalmente, los modos de vibración se calculan utilizando las entradas y salidas registradas. Cuando el sistema es una gran estructura como un puente o un edificio, los experimentos tienen que realizarse in situ, por lo que no es posible registrar entradas al sistema tales como viento, tráfico, . . . Incluso si se aplica una entrada conocida, el procedimiento suele ser complicado y caro, y todavía están presentes perturbaciones no controladas que excitan el sistema durante el test. Estos hechos han llevado a la idea de calcular los modos de vibración utilizando sólo las vibraciones registradas en la estructura y sin tener en cuenta las cargas que las originan, ya sean cargas ambientales (viento, terremotos, . . . ) o cargas de explotación (tráfico, cargas humanas, . . . ). Este procedimiento se conoce en la literatura especializada como Análisis Modal Operacional, y en general consiste en ajustar un modelo matemático a los datos registrados adoptando la hipótesis de que las excitaciones no conocidas son realizaciones de un proceso estocástico estacionario (generalmente ruido blanco). Posteriormente, los modos de vibración se calculan a partir del modelo estimado. El primer problema que se ha investigado en esta tesis es la utilización de máxima verosimilitud y el algoritmo EM (Expectation-Maximization) para la estimación del modelo espacio de los estados en el ámbito del Análisis Modal Operacional. El algoritmo se describe en detalle y también se analiza como aplicarlo cuando se dispone de datos de vibraciones de una estructura. A continuación se compara con otro método muy conocido, el método de los Subespacios. Los estimadores máximo verosímiles presentan una serie de propiedades que los hacen óptimos desde un punto de vista estadístico, pero la propiedad más destacable del algoritmo EM es que puede utilizarse para resolver un amplio abanico de situaciones que se presentan en el Análisis Modal Operacional. En este trabajo se proponen y estiman tres modelos en el espacio de los estados: • El primer modelo se utiliza para estimar los modos de vibración cuando se dispone de datos correspondientes a varios experimentos realizados en la misma estructura. En lugar de analizar registro a registro y calcular promedios, se utiliza algoritmo EM para la estimación conjunta del modelo propuesto utilizando todos los datos disponibles. • El segundo modelo en el espacio de los estados propuesto se utiliza para estimar los modos de vibración cuando el número de sensores disponibles es menor que vi Resumen el número de puntos que se quieren analizar en la estructura. En estos casos es usual realizar varios ensayos cambiando la posición de los sensores de un ensayo a otro (múltiples configuraciones de sensores). En este trabajo se utiliza el algoritmo EM para estimar los parámetros modales teniendo en cuenta los datos de todas las configuraciones. • Por último, se propone otro modelo en el espacio de los estados para estimar los modos de vibración en la presencia de entradas al sistema que no pueden modelarse como procesos estocásticos de ruido blanco. En estos casos, las frecuencias de las entradas no se pueden separar de las frecuencias del sistema y se obtienen modos espurios en la fase de identificación. La idea es registrar la respuesta de la estructura correspondiente a diferentes entradas; entonces se adopta la hipótesis de que los parámetros comunes a todos los registros corresponden a la estructura (modos de vibración), y los parámetros encontrados en un registro específico corresponden a la entrada en dicho ensayo. El problema se resuelve utilizando el modelo propuesto y el algoritmo EM.
Resumo:
This paper presents a time-domain stochastic system identification method based on Maximum Likelihood Estimation and the Expectation Maximization algorithm. The effectiveness of this structural identification method is evaluated through numerical simulation in the context of the ASCE benchmark problem on structural health monitoring. Modal parameters (eigenfrequencies, damping ratios and mode shapes) of the benchmark structure have been estimated applying the proposed identification method to a set of 100 simulated cases. The numerical results show that the proposed method estimates all the modal parameters reasonably well in the presence of 30% measurement noise even. Finally, advantages and disadvantages of the method have been discussed.
Resumo:
In Operational Modal Analysis (OMA) of a structure, the data acquisition process may be repeated many times. In these cases, the analyst has several similar records for the modal analysis of the structure that have been obtained at di�erent time instants (multiple records). The solution obtained varies from one record to another, sometimes considerably. The differences are due to several reasons: statistical errors of estimation, changes in the external forces (unmeasured forces) that modify the output spectra, appearance of spurious modes, etc. Combining the results of the di�erent individual analysis is not straightforward. To solve the problem, we propose to make the joint estimation of the parameters using all the records. This can be done in a very simple way using state space models and computing the estimates by maximum-likelihood. The method provides a single result for the modal parameters that combines optimally all the records.