994 resultados para mixing model


Relevância:

70.00% 70.00%

Publicador:

Resumo:

Background: Bayesian mixing models have allowed for the inclusion of uncertainty and prior information in the analysis of trophic interactions using stable isotopes. Formulating prior distributions is relatively straightforward when incorporating dietary data. However, the use of data that are related, but not directly proportional, to diet (such as prey availability data) is often problematic because such information is not necessarily predictive of diet, and the information required to build a reliable prior distribution for all prey species is often unavailable. Omitting prey availability data impacts the estimation of a predator's diet and introduces the strong assumption of consumer ultrageneralism (where all prey are consumed in equal proportions), particularly when multiple prey have similar isotope values. Methodology: We develop a procedure to incorporate prey availability data into Bayesian mixing models conditional on the similarity of isotope values between two prey. If a pair of prey have similar isotope values (resulting in highly uncertain mixing model results), our model increases the weight of availability data in estimating the contribution of prey to a predator's diet. We test the utility of this method in an intertidal community against independently measured feeding rates. Conclusions: Our results indicate that our weighting procedure increases the accuracy by which consumer diets can be inferred in situations where multiple prey have similar isotope values. This suggests that the exchange of formalism for predictive power is merited, particularly when the relationship between prey availability and a predator's diet cannot be assumed for all species in a system.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

Proceedings of International Conference - SPIE 7477, Image and Signal Processing for Remote Sensing XV - 28 September 2009

Relevância:

70.00% 70.00%

Publicador:

Resumo:

Carbon and oxygen isotope studies of the host and gangue carbonates of Mississippi Valley-type zinc-lead deposits in the San Vicente District hosted in the Upper Triassic to Lower Jurassic dolostones of the Pucara basin (central Peru) were used to constrain models of the ore formation. A mixing model between an incoming hot saline slightly acidic radiogenic (Pb, Sr) fluid and the native formation water explains the overall isotopic variation (delta(13)C = - 11.5 to + 2.5 parts per thousand relative to PDB and delta(18)O = + 18.0 to + 24.3 parts per thousand relative to SMOW) of the carbonate generations. The dolomites formed during the main ore stage show a narrower range (delta(13)C = - 0.1 to + 1.7 parts per thousand and delta(18)O = + 18.7 to + 23.4 parts per thousand) which is explained by exchange between the mineralizing fluids and the host carbonates combined with changes in temperature and pressure. This model of fluid-rock interaction explains the pervasive alteration of the host dolomite I and precipitation of sphalerite I. The open-space filling hydrothermal white sparry dolomite and the coexisting sphalerite II formed by prolonged fluid-host dolomite interaction and limited CO2 degassing. Late void-filling dolomite III (or calcite) and the associated sphalerite III formed as the consequence of CO2 degassing and concomitant pH increase of a slightly acidic ore fluid. Widespread brecciation is associated to CO2 outgassing. Consequently, pressure variability plays a major role in the ore precipitation during the late hydrothermal events in San Vicente. The presence of native sulfur associated with extremely carbon-light calcites replacing evaporitic sulfates (e.g., delta(13)C = - 11.5 parts per thousand), altered native organic matter and heavier hydrothermal bitumen (from - 27.0 to - 23.0 parts per thousand delta(13)C) points to thermochemical reduction of sulfate and/or thiosulfate. The delta(13)C- and delta(18)O-values of the altered host dolostone and hydrothermal carbonates, and the carbon isotope composition of the associated organic matter show a strong regional homogeneity. These results coupled with the strong mineralogical and petrographic similarities of the different MVT occurrences perhaps reflects the fact that the mineralizing processes were similar in the whole San Vicente belt, suggesting the existence of a common regional mineralizing hydrothermal system with interconnected plumbing.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

The role of computer modeling has grown recently to integrate itself as an inseparable tool to experimental studies for the optimization of automotive engines and the development of future fuels. Traditionally, computer models rely on simplified global reaction steps to simulate the combustion and pollutant formation inside the internal combustion engine. With the current interest in advanced combustion modes and injection strategies, this approach depends on arbitrary adjustment of model parameters that could reduce credibility of the predictions. The purpose of this study is to enhance the combustion model of KIVA, a computational fluid dynamics code, by coupling its fluid mechanics solution with detailed kinetic reactions solved by the chemistry solver, CHEMKIN. As a result, an engine-friendly reaction mechanism for n-heptane was selected to simulate diesel oxidation. Each cell in the computational domain is considered as a perfectly-stirred reactor which undergoes adiabatic constant- volume combustion. The model was applied to an ideally-prepared homogeneous- charge compression-ignition combustion (HCCI) and direct injection (DI) diesel combustion. Ignition and combustion results show that the code successfully simulates the premixed HCCI scenario when compared to traditional combustion models. Direct injection cases, on the other hand, do not offer a reliable prediction mainly due to the lack of turbulent-mixing model, inherent in the perfectly-stirred reactor formulation. In addition, the model is sensitive to intake conditions and experimental uncertainties which require implementation of enhanced predictive tools. It is recommended that future improvements consider turbulent-mixing effects as well as optimization techniques to accurately simulate actual in-cylinder process with reduced computational cost. Furthermore, the model requires the extension of existing fuel oxidation mechanisms to include pollutant formation kinetics for emission control studies.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Lignin phenols were measured in the sediments of Sepitiba Bay, Rio de Janeiro, Brazil and in bedload sediments and suspended sediments of the four major fluvial inputs to the bay: Sao Francisco and Guandu Channels and the Guarda and Cacao Rivers. Fluvial suspended lignin yields (Sigma 8 3.5-14.6 mgC 10 g dw(-1)) vary little between the wet and dry seasons and are poorly correlated with fluvial chlorophyll concentrations (0.8-50.2 mu gC L(-1)). Despite current land use practices that favor grassland agriculture or industrial uses, fluvial lignin compositions are dominated by a degraded leaf-sourced material. The exception is the Guarda River, which has a slight influence from grasses. The Lignin Phenol Vegetation Index, coupled with acid/aldehyde and 3.5 Db/V ratios, indicate that degraded leaf-derived phenols are also the primary preserved lignin component in the bay. The presence of fringe Typha sp. and Spartina sp. grass beds surrounding portions of the Bay are not reflected in the lignin signature. Instead, lignin entering the bay appears to reflect the erosion of soils containing a degraded signature from the former Atlantic rain forest that once dominated the watershed, instead of containing a significant signature derived from current agricultural uses. A three-component mixing model using the LPVI, atomic N:C ratios, and stable carbon isotopes (which range between -26.8 and -21.8 parts per thousand) supports the hypothesis that fluvial inputs to the bay are dominated by planktonic matter (78% of the input), with lignin dominated by leaf (14% of the input) over grass (6%). Sediments are composed of a roughly 50-50 mixture of autochthonous material and terrigenous material, with lignin being primarily sourced from leaf. (C) 2010 Elsevier Ltd. All rights reserved.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

In this paper, a novel wire-mesh sensor based on permittivity (capacitance) measurements is applied to generate images of the phase fraction distribution and investigate the flow of viscous oil and water in a horizontal pipe. Phase fraction values were calculated from the raw data delivered by the wire-mesh sensor using different mixture permittivity models. Furthermore, these data were validated against quick-closing valve measurements. Investigated flow patterns were dispersion of oil in water (Do/w) and dispersion of oil in water and water in oil (Do/w&w/o). The Maxwell-Garnett mixing model is better suited for Dw/o and the logarithmic model for Do/w&w/o flow pattern. Images of the time-averaged cross-sectional oil fraction distribution along with axial slice images were used to visualize and disclose some details of the flow.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

The perfect mixing model (PMM) is based on parameters derived from the equipment characteristics as well as ore breakage characteristics. Ore characteristics are represented through the appearance function. This function may be determined using JKMRC laboratorial methods or by standard functions. This work describes the model fitting process of the Carajas grinding circuit, using the JKSimMet simulator Two scenarios were used in model fitting exercises: 1) standard appearance function; and 2) appearance fund ion based on testing carried out on samples taken at circuit feed. From this assessment, the appearance function`s influence in the PMM,fit and it`s relation with the breakage rate were determined. The influence of the appearance function on the respective breakage rate distribution was assessed.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

This paper is an elaboration of the DECA algorithm [1] to blindly unmix hyperspectral data. The underlying mixing model is linear, meaning that each pixel is a linear mixture of the endmembers signatures weighted by the correspondent abundance fractions. The proposed method, as DECA, is tailored to highly mixed mixtures in which the geometric based approaches fail to identify the simplex of minimum volume enclosing the observed spectral vectors. We resort then to a statitistical framework, where the abundance fractions are modeled as mixtures of Dirichlet densities, thus enforcing the constraints on abundance fractions imposed by the acquisition process, namely non-negativity and constant sum. With respect to DECA, we introduce two improvements: 1) the number of Dirichlet modes are inferred based on the minimum description length (MDL) principle; 2) The generalized expectation maximization (GEM) algorithm we adopt to infer the model parameters is improved by using alternating minimization and augmented Lagrangian methods to compute the mixing matrix. The effectiveness of the proposed algorithm is illustrated with simulated and read data.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Proceedings of International Conference Conference Volume 7830 Image and Signal Processing for Remote Sensing XVI Lorenzo Bruzzone Toulouse, France | September 20, 2010

Relevância:

60.00% 60.00%

Publicador:

Resumo:

The development of high spatial resolution airborne and spaceborne sensors has improved the capability of ground-based data collection in the fields of agriculture, geography, geology, mineral identification, detection [2, 3], and classification [4–8]. The signal read by the sensor from a given spatial element of resolution and at a given spectral band is a mixing of components originated by the constituent substances, termed endmembers, located at that element of resolution. This chapter addresses hyperspectral unmixing, which is the decomposition of the pixel spectra into a collection of constituent spectra, or spectral signatures, and their corresponding fractional abundances indicating the proportion of each endmember present in the pixel [9, 10]. Depending on the mixing scales at each pixel, the observed mixture is either linear or nonlinear [11, 12]. The linear mixing model holds when the mixing scale is macroscopic [13]. The nonlinear model holds when the mixing scale is microscopic (i.e., intimate mixtures) [14, 15]. The linear model assumes negligible interaction among distinct endmembers [16, 17]. The nonlinear model assumes that incident solar radiation is scattered by the scene through multiple bounces involving several endmembers [18]. Under the linear mixing model and assuming that the number of endmembers and their spectral signatures are known, hyperspectral unmixing is a linear problem, which can be addressed, for example, under the maximum likelihood setup [19], the constrained least-squares approach [20], the spectral signature matching [21], the spectral angle mapper [22], and the subspace projection methods [20, 23, 24]. Orthogonal subspace projection [23] reduces the data dimensionality, suppresses undesired spectral signatures, and detects the presence of a spectral signature of interest. The basic concept is to project each pixel onto a subspace that is orthogonal to the undesired signatures. As shown in Settle [19], the orthogonal subspace projection technique is equivalent to the maximum likelihood estimator. This projection technique was extended by three unconstrained least-squares approaches [24] (signature space orthogonal projection, oblique subspace projection, target signature space orthogonal projection). Other works using maximum a posteriori probability (MAP) framework [25] and projection pursuit [26, 27] have also been applied to hyperspectral data. In most cases the number of endmembers and their signatures are not known. Independent component analysis (ICA) is an unsupervised source separation process that has been applied with success to blind source separation, to feature extraction, and to unsupervised recognition [28, 29]. ICA consists in finding a linear decomposition of observed data yielding statistically independent components. Given that hyperspectral data are, in given circumstances, linear mixtures, ICA comes to mind as a possible tool to unmix this class of data. In fact, the application of ICA to hyperspectral data has been proposed in reference 30, where endmember signatures are treated as sources and the mixing matrix is composed by the abundance fractions, and in references 9, 25, and 31–38, where sources are the abundance fractions of each endmember. In the first approach, we face two problems: (1) The number of samples are limited to the number of channels and (2) the process of pixel selection, playing the role of mixed sources, is not straightforward. In the second approach, ICA is based on the assumption of mutually independent sources, which is not the case of hyperspectral data, since the sum of the abundance fractions is constant, implying dependence among abundances. This dependence compromises ICA applicability to hyperspectral images. In addition, hyperspectral data are immersed in noise, which degrades the ICA performance. IFA [39] was introduced as a method for recovering independent hidden sources from their observed noisy mixtures. IFA implements two steps. First, source densities and noise covariance are estimated from the observed data by maximum likelihood. Second, sources are reconstructed by an optimal nonlinear estimator. Although IFA is a well-suited technique to unmix independent sources under noisy observations, the dependence among abundance fractions in hyperspectral imagery compromises, as in the ICA case, the IFA performance. Considering the linear mixing model, hyperspectral observations are in a simplex whose vertices correspond to the endmembers. Several approaches [40–43] have exploited this geometric feature of hyperspectral mixtures [42]. Minimum volume transform (MVT) algorithm [43] determines the simplex of minimum volume containing the data. The MVT-type approaches are complex from the computational point of view. Usually, these algorithms first find the convex hull defined by the observed data and then fit a minimum volume simplex to it. Aiming at a lower computational complexity, some algorithms such as the vertex component analysis (VCA) [44], the pixel purity index (PPI) [42], and the N-FINDR [45] still find the minimum volume simplex containing the data cloud, but they assume the presence in the data of at least one pure pixel of each endmember. This is a strong requisite that may not hold in some data sets. In any case, these algorithms find the set of most pure pixels in the data. Hyperspectral sensors collects spatial images over many narrow contiguous bands, yielding large amounts of data. For this reason, very often, the processing of hyperspectral data, included unmixing, is preceded by a dimensionality reduction step to reduce computational complexity and to improve the signal-to-noise ratio (SNR). Principal component analysis (PCA) [46], maximum noise fraction (MNF) [47], and singular value decomposition (SVD) [48] are three well-known projection techniques widely used in remote sensing in general and in unmixing in particular. The newly introduced method [49] exploits the structure of hyperspectral mixtures, namely the fact that spectral vectors are nonnegative. The computational complexity associated with these techniques is an obstacle to real-time implementations. To overcome this problem, band selection [50] and non-statistical [51] algorithms have been introduced. This chapter addresses hyperspectral data source dependence and its impact on ICA and IFA performances. The study consider simulated and real data and is based on mutual information minimization. Hyperspectral observations are described by a generative model. This model takes into account the degradation mechanisms normally found in hyperspectral applications—namely, signature variability [52–54], abundance constraints, topography modulation, and system noise. The computation of mutual information is based on fitting mixtures of Gaussians (MOG) to data. The MOG parameters (number of components, means, covariances, and weights) are inferred using the minimum description length (MDL) based algorithm [55]. We study the behavior of the mutual information as a function of the unmixing matrix. The conclusion is that the unmixing matrix minimizing the mutual information might be very far from the true one. Nevertheless, some abundance fractions might be well separated, mainly in the presence of strong signature variability, a large number of endmembers, and high SNR. We end this chapter by sketching a new methodology to blindly unmix hyperspectral data, where abundance fractions are modeled as a mixture of Dirichlet sources. This model enforces positivity and constant sum sources (full additivity) constraints. The mixing matrix is inferred by an expectation-maximization (EM)-type algorithm. This approach is in the vein of references 39 and 56, replacing independent sources represented by MOG with mixture of Dirichlet sources. Compared with the geometric-based approaches, the advantage of this model is that there is no need to have pure pixels in the observations. The chapter is organized as follows. Section 6.2 presents a spectral radiance model and formulates the spectral unmixing as a linear problem accounting for abundance constraints, signature variability, topography modulation, and system noise. Section 6.3 presents a brief resume of ICA and IFA algorithms. Section 6.4 illustrates the performance of IFA and of some well-known ICA algorithms with experimental data. Section 6.5 studies the ICA and IFA limitations in unmixing hyperspectral data. Section 6.6 presents results of ICA based on real data. Section 6.7 describes the new blind unmixing scheme and some illustrative examples. Section 6.8 concludes with some remarks.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Hyperspectral remote sensing exploits the electromagnetic scattering patterns of the different materials at specific wavelengths [2, 3]. Hyperspectral sensors have been developed to sample the scattered portion of the electromagnetic spectrum extending from the visible region through the near-infrared and mid-infrared, in hundreds of narrow contiguous bands [4, 5]. The number and variety of potential civilian and military applications of hyperspectral remote sensing is enormous [6, 7]. Very often, the resolution cell corresponding to a single pixel in an image contains several substances (endmembers) [4]. In this situation, the scattered energy is a mixing of the endmember spectra. A challenging task underlying many hyperspectral imagery applications is then decomposing a mixed pixel into a collection of reflectance spectra, called endmember signatures, and the corresponding abundance fractions [8–10]. Depending on the mixing scales at each pixel, the observed mixture is either linear or nonlinear [11, 12]. Linear mixing model holds approximately when the mixing scale is macroscopic [13] and there is negligible interaction among distinct endmembers [3, 14]. If, however, the mixing scale is microscopic (or intimate mixtures) [15, 16] and the incident solar radiation is scattered by the scene through multiple bounces involving several endmembers [17], the linear model is no longer accurate. Linear spectral unmixing has been intensively researched in the last years [9, 10, 12, 18–21]. It considers that a mixed pixel is a linear combination of endmember signatures weighted by the correspondent abundance fractions. Under this model, and assuming that the number of substances and their reflectance spectra are known, hyperspectral unmixing is a linear problem for which many solutions have been proposed (e.g., maximum likelihood estimation [8], spectral signature matching [22], spectral angle mapper [23], subspace projection methods [24,25], and constrained least squares [26]). In most cases, the number of substances and their reflectances are not known and, then, hyperspectral unmixing falls into the class of blind source separation problems [27]. Independent component analysis (ICA) has recently been proposed as a tool to blindly unmix hyperspectral data [28–31]. ICA is based on the assumption of mutually independent sources (abundance fractions), which is not the case of hyperspectral data, since the sum of abundance fractions is constant, implying statistical dependence among them. This dependence compromises ICA applicability to hyperspectral images as shown in Refs. [21, 32]. In fact, ICA finds the endmember signatures by multiplying the spectral vectors with an unmixing matrix, which minimizes the mutual information among sources. If sources are independent, ICA provides the correct unmixing, since the minimum of the mutual information is obtained only when sources are independent. This is no longer true for dependent abundance fractions. Nevertheless, some endmembers may be approximately unmixed. These aspects are addressed in Ref. [33]. Under the linear mixing model, the observations from a scene are in a simplex whose vertices correspond to the endmembers. Several approaches [34–36] have exploited this geometric feature of hyperspectral mixtures [35]. Minimum volume transform (MVT) algorithm [36] determines the simplex of minimum volume containing the data. The method presented in Ref. [37] is also of MVT type but, by introducing the notion of bundles, it takes into account the endmember variability usually present in hyperspectral mixtures. The MVT type approaches are complex from the computational point of view. Usually, these algorithms find in the first place the convex hull defined by the observed data and then fit a minimum volume simplex to it. For example, the gift wrapping algorithm [38] computes the convex hull of n data points in a d-dimensional space with a computational complexity of O(nbd=2cþ1), where bxc is the highest integer lower or equal than x and n is the number of samples. The complexity of the method presented in Ref. [37] is even higher, since the temperature of the simulated annealing algorithm used shall follow a log( ) law [39] to assure convergence (in probability) to the desired solution. Aiming at a lower computational complexity, some algorithms such as the pixel purity index (PPI) [35] and the N-FINDR [40] still find the minimum volume simplex containing the data cloud, but they assume the presence of at least one pure pixel of each endmember in the data. This is a strong requisite that may not hold in some data sets. In any case, these algorithms find the set of most pure pixels in the data. PPI algorithm uses the minimum noise fraction (MNF) [41] as a preprocessing step to reduce dimensionality and to improve the signal-to-noise ratio (SNR). The algorithm then projects every spectral vector onto skewers (large number of random vectors) [35, 42,43]. The points corresponding to extremes, for each skewer direction, are stored. A cumulative account records the number of times each pixel (i.e., a given spectral vector) is found to be an extreme. The pixels with the highest scores are the purest ones. N-FINDR algorithm [40] is based on the fact that in p spectral dimensions, the p-volume defined by a simplex formed by the purest pixels is larger than any other volume defined by any other combination of pixels. This algorithm finds the set of pixels defining the largest volume by inflating a simplex inside the data. ORA SIS [44, 45] is a hyperspectral framework developed by the U.S. Naval Research Laboratory consisting of several algorithms organized in six modules: exemplar selector, adaptative learner, demixer, knowledge base or spectral library, and spatial postrocessor. The first step consists in flat-fielding the spectra. Next, the exemplar selection module is used to select spectral vectors that best represent the smaller convex cone containing the data. The other pixels are rejected when the spectral angle distance (SAD) is less than a given thresh old. The procedure finds the basis for a subspace of a lower dimension using a modified Gram–Schmidt orthogonalizati on. The selected vectors are then projected onto this subspace and a simplex is found by an MV T pro cess. ORA SIS is oriented to real-time target detection from uncrewed air vehicles using hyperspectral data [46]. In this chapter we develop a new algorithm to unmix linear mixtures of endmember spectra. First, the algorithm determines the number of endmembers and the signal subspace using a newly developed concept [47, 48]. Second, the algorithm extracts the most pure pixels present in the data. Unlike other methods, this algorithm is completely automatic and unsupervised. To estimate the number of endmembers and the signal subspace in hyperspectral linear mixtures, the proposed scheme begins by estimating sign al and noise correlation matrices. The latter is based on multiple regression theory. The signal subspace is then identified by selectin g the set of signal eigenvalue s that best represents the data, in the least-square sense [48,49 ], we note, however, that VCA works with projected and with unprojected data. The extraction of the end members exploits two facts: (1) the endmembers are the vertices of a simplex and (2) the affine transformation of a simplex is also a simplex. As PPI and N-FIND R algorithms, VCA also assumes the presence of pure pixels in the data. The algorithm iteratively projects data on to a direction orthogonal to the subspace spanned by the endmembers already determined. The new end member signature corresponds to the extreme of the projection. The algorithm iterates until all end members are exhausted. VCA performs much better than PPI and better than or comparable to N-FI NDR; yet it has a computational complexity between on e and two orders of magnitude lower than N-FINDR. The chapter is structure d as follows. Section 19.2 describes the fundamentals of the proposed method. Section 19.3 and Section 19.4 evaluate the proposed algorithm using simulated and real data, respectively. Section 19.5 presents some concluding remarks.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Tese de Doutoramento (Programa Doutoral em Engenharia Biomédica)