998 resultados para minimum force jump


Relevância:

100.00% 100.00%

Publicador:

Resumo:

When an assistant robotic manipulator cooperatively performs a task with a human and the task is required to be highly reliable, then fault tolerance is essential. To achieve the fault tolerance force within the human robot cooperation, it is required to map the effects of the faulty joint of the robot into the manipulator’s healthy joints’ torque space and the human force. The objective is to optimally maintain the cooperative force within the human robot cooperation. This paper aims to analyze the fault tolerant force within the cooperation and two frameworks are proposed. Then they have been validated through a fault scenario. Finally, the minimum force jump which is the optimal fault tolerance has been achieved.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The problem of optimum design of a Lanchester damper for minimum force transmission from a viscously damped single degree of freedom system subjected to harmonic excitation is investigated. Explicit expressions are developed for determining the optimum absorber parameters. It is shown that for the particular case of the undamped single degree of freedom system the results reduce to the classical ones obtained by using the concept of a fixed point on the transmissibility curves.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Fault tolerant manipulators maintain their trajectory even if their joint/s fails. Assuming that the manipulator is fault tolerant on its trajectory, fault tolerant compliance manipulators provide required force at their end-effector even when a joint fails. To achieve this, the contributions of the faulty joints for the force of the end-effector are required to be mapped into the proper compensating joint torques of the healthy joints to maintain the force. This paper addresses the optimal mapping to minimize the force jump due to a fault, which is the maximum effort to maintain the force when a fault occurs. The paper studies the locked joint fault/s of the redundant manipulators and it relates the force jump at the end-effector to the faults within the joints. Adding on a previous study to maintain the trajectory, in here the objective is to providing fault tolerant force at the end-effector of the redundant manipulators. This optimal mapping with minimum force jump is presented using matrix perturbation model. And the force jump is calculated through this model for single and multiple joints fault. The proposed optimal mapping is used in different fault scenarios for a 5-DOF manipulator; also it is deployed to compensate the force at the end-effector for the 5-DOF manipulator through simulation study and the results are presented.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Static nonlinear systems are common when the model of the kinematics of mechanical or civil structures is analyzed for instance kinematics of robotic manipulators. This paper addresses the maximum effort toward fault tolerance for any number of the locked actuators failures in static nonlinear systems. It optimally reconfigures the inputs via a mapping that maximally accommodates the failures. The mapping maps the failures to an extra action of healthy actuators that results to a minimum jump for the velocity of the output variables. Then from this mapping, the minimum jump of the velocity of the output is calculated. The conditions for a zero velocity jump of the output variables are discussed. This shows that, when the conditions of fault tolerance are maintained, the proposed framework is capable of fault recovery not only at fault instances but also at the whole output trajectory. The proposed mapping is validated by three case studies.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Autonomous or teleoperation of critical tasks in space applications require fault tolerant robotic manipulators. These manipulators are able to maintain their tasks even if a joint fails. If it is presumed that the manipulator is fault tolerant on its trajectory, then the next step is to provide a fault tolerant force at the end-effector of the manipulator. The problem of cooperative fault tolerant force is addressed in this paper within the operation of two manipulators. The cooperative manipulators are used to compensate the force jump which occurs on the force of the end-effector of one manipulator due to a joint failure. To achieve fault tolerant operation, the contribution of the faulty joint for the force of the end-effector of the faulty manipulator is required to be optimally mapped into the torque of the faulty and healthy manipulators. The optimal joint torque reconfigurations of both manipulators for compensating this force jump are illustrated. The proposed frameworks are deployed for two cooperative PUMA560 manipulators. The results of the case studies validate the fault tolerant cooperation strategies.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Fault tolerance for a class of non linear systems is addressed based on the velocity of their output variables. This paper presents a mapping to minimize the possible jump of the velocity of the output, due to the actuator failure. The failure of the actuator is assumed as actuator lock. The mapping is derived and it provides the proper input commands for the healthy actuators of the system to tolerate the effect of the faulty actuator on the output of the system. The introduced mapping works as an optimal input reconfiguration for fault recovery, which provides a minimum velocity jump suitable for static nonlinear systems. The proposed mapping is validated through different case studies and a complementary simulation. In the case studies and the simulation, the mapping provides the commands to compensate the effect of different faults within the joints of a robotic manipulator. The new commands and the compare between the velocity of the output variables for the health and faulty system are presented.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Mémoire numérisé par la Division de la gestion de documents et des archives de l'Université de Montréal

Relevância:

80.00% 80.00%

Publicador:

Resumo:

The problem of designing an optimum Lanchester damper for a viscously damped single degree of freedom system subjected to inertial harmonic excitation is investigated. Two criteria are used for optimizing the performance of the damper: (i) minimum motion transmissibility; (ii) minimum force transmissibility. Explicit expressions are developed for determining the absorber parameters.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Carcinus manenas, Liocarcinus puber and Cancer pagurs are thought to be three likely crab predators of the gastropod Calliostoma Zizyphinum. In order to compare the strenghts of predators and their prey, the whole shell and aperture lip strengh of white and pink Calliostoma morphotypes and the maximum forces exerted by the chelipeds of three crab species were measured. Although white shells were thicker than pink shells, Calliostoma colour morphotyes did not differ significantly in either the force required to break the shell lip or the whole shell. Both Liocarcinus puber and Carcinus maenas have dimorphic chelipeds and their “crusher” chelipeds deliver almost double the forces generated by the‘cutter’chelipeds. In constrast, Cancer pagurus has monomorphic chelipeds both delivering similar forces. When compared with Calliostoma shell strenght, the forces generated by the‘crusher’chelipeds of most L. puber tested were, in general, sufficient to break the shell lip of Calliostoma shells, whereas forces generated by the‘cutter’chelipeds of only the larger individuals were sufficient to break the shell lip. In C. manenas, forces generated by both the‘cutter’and‘crusher’chelipeds often exceeded the minimum recorded force required to break the shell lip and the‘crusher’cheliped reached the minimum force required to break whole Calliostoma shells. Both chelipeds of all C. pagurus tested generated forces in excess of the minimum required to break the shell lip, and the proportion of individuals capable of generating the minimum force required to break the whole shell increased with the size of the size of the crab. Carcinus maenas and Cancer pagurus were capable of breaking both the shell lips and the whole shells of a wider range of shell sizes than L. puber.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

PURPOSE: This preliminary investigation was designed to test the hypothesis that high intensity single-leg exercise can cause extensive cell DNA damage, which subsequently may affect the expression of the HO-1 gene. METHODS: Six (n=6) apparently healthy male participants (age 27 + 7 yrs, stature 174 + 12 cm, body mass 79 + 4 kg and BMI 24 + 4 kg/m2) completed 100 isolated and continuous maximal concentric contractions (minimum force = 200 N, speed of contraction = 60°/sec) of the rectus femoris muscle. Using a spring-loaded and reusable Magnum biopsy gun with a 16-gauge core disposable biopsy needle, skeletal muscle micro biopsy tissue samples were extracted at rest and following exercise. mRNA gene expression was determined via two-step quantitative real-time PCR using GAPDH as a reference gene. RESULTS: The average muscle force production was 379 + 179 N. High intensity exercise increased mitochondrial 8-OHdG concentration (P < 0.05 vs. rest) with a concomitant decrease in total antioxidant capacity (P < 0.05 vs. rest). Exercise also increased protein oxidation as quantified by protein carbonyl concentration (P < 0.05 vs. rest). HO-1 expression increased (> 2-fold change vs. rest) following exercise, and it is postulated that this change was not significant due to low subject numbers (P > 0.05). CONCLUSION: These preliminary findings tentatively suggest that maximal concentric muscle contractions can cause intracellular DNA damage with no apparent disruption to the expression of the antioxidant stress protein HO-1. Moreover, it is likely that cell oxidant stress is required to activate the signal transduction cascade related to the expression of HO-1. A large-scale study incorporating a greater subject number is warranted to fully elucidate this relationship.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Examination of how Victoria's Special Operations Group and their tactics have contributed to the extraordinary number of police shootings in Victoria. Looks at how these tactics have been passed on to the ordinary police. Based on author's research into the paramilitarisation of the police. Exposes the risks of allowing Australia's police forces to move away from their original charter of keeping the peace with the use of minimum force. Author lectures in Police Studies at Deakin University. She has represented the families of several men shot and killed by police in the late 1980s in her work as a community lawyer.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

If the end-effector of a robotic manipulator moves on a specified trajectory, then for the fault tolerant operation, it is required that the end-effector continues the trajectory with a minimum velocity jump when a fault occurs within a joint. This problem is addressed in the paper. A way to tolerate the fault is to find new joint velocities for the faulty manipulator in which results into the same end-effector velocity provided by the healthy manipulator. The aim of this study is to find a strategy which optimally redistributes the joint velocities for the remained healthy joints of the manipulators. The optimality is defined by the minimum end-effector velocity jump. A solution of the problem is presented and it is applied to a robotics manipulator. Then through a case study and a simulation study it is validated. The paper shows that if would be possible the joint velocity redistribution results into a zero velocity jump.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

In this paper a method for automatic design of the prestress in continuous bridge decks is presented. In a first step of the procedure the optimal prestressed force for a completely geometrically defined and feasible prestress layout is obtained by means of linear programming techniques. Further on, in a second step the prestress geometry and minimum force are automatically found by steepest descent optimization techniques. Finally this methodology is applied to two-span continuous bridge decks and from the obtained results some preliminary design rules can be drawn.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

The fluid force coefficients on a transversely oscillating cylinder are calculated by applying two- dimensional large eddy simulation method. Considering the ‘‘jump’’ phenomenon of the amplitude of lift coefficient is harmful to the security of the submarine slender structures, the characteristics of this ‘‘jump’’ are dissertated concretely. By comparing with experiment results, we establish a numerical model for predicting the jump of lift force on an oscillating cylinder, providing consultation for revising the hydrodynamic parameters and checking the fatigue life scale design of submarine slender cylindrical structures.