898 resultados para minimal fungicidal concentration
Resumo:
O perfil de sensibilidade microbiana e a concentração inibitória mínima (MIC) da azitromicina para 42 cepas de Rhodococcus equi isoladas de potros, no Brasil, e em uma cepa-controle, foi avaliado, respectivamente, pelos métodos de difusão com discos e E-test. A azitromicina apresentou 100% de efetividade in vitro para todas as cepas em ambos os testes. As cepas de R. equi apresentaram MIC90 para azitromicina em valores <1.5µg/ml. Este estudo mostra a alta efetividade da azitromicina em linhagens de R. equi isoladas no Brasil, sugerindo o uso dessa droga como alternativa na terapia da rodococose em potros.
Resumo:
The severity and frequency of opportunistic fungal infections still growing, concomitantly to the increasing rates of antimicrobial drugs resistance. Natural matrices have been used over years due to its multitude of health benefits, including antifungal potential. Thus, the present work aims to evaluate the anti-Candida potential of the phenolic extract and individual phenolic compounds of Glycyrrhiza glabra L. (licorice), by disc diffusion assay, followed by determination of the minimal inhibitory concentration (MIC) and minimal fungicidal concentration (MFC) for both planktonic cells and biofilms. Licorice extract evidenced inhibitory potential against the nineteen tested Candida strains, but no pronounced effect was observed by testing the most abundant individual phenolic compounds. Candida tropicalis strains were the most sensible, followed by Candida glabrata, Candida parapsilosis and, then, Candida albicans. Lower MIC and MFC values were achieved to C. glabrata and C. tropicalis, which confirms its susceptibility to licorice extract; however, for C. tropicalis strains a higher variability was observed. Anti-biofilm potential was also achieved, being most evident in some C. glabrata and C. tropicalis strains. In general, a twice concentration of the MIC was necessary for planktonic cells to obtain a similar potential to that one observed for biofilms. Thus, an upcoming approach for new antifungal agents, more effective and safer than the current ones, is stablished; notwithstanding, further studies are necessary in order to understand its mechanism of action, as also to assess kinetic parameters.
Resumo:
Several types of drugs currently used in clinical practice were screened in vitro for their potentiation of the antifungal effect of the fungistatic agent fluconazole (FLC) on Candida albicans. These drugs included inhibitors of multidrug efflux transporters, antimicrobial agents, antifungal agents, and membrane-active compounds with no antimicrobial activity, such as antiarrhythmic agents, proton pump inhibitors, and platelet aggregation inhibitors. Among the drugs tested in an agar disk diffusion assay, cyclosporine (Cy), which had no intrinsic antifungal activity, showed a potent antifungal effect in combination with FLC. In a checkerboard microtiter plate format, however, it was observed that the MIC of FLC, as classically defined by the NCCLS recommendations, was unchanged when FLC and Cy were combined. Nevertheless, if a different reading endpoint corresponding to the minimal fungicidal concentration needed to decrease viable counts by at least 3 logs in comparison to the growth control was chosen, the combination was synergistic (fractional inhibitory concentration index of <1). This endpoint fitted to the definition of MIC-0 (optically clear wells) and reflected the absence of the trailing effect, which is the result of a residual growth at FLC concentrations greater than the MIC. The MIC-0 values of FLC and Cy tested alone in C. albicans were >32 and >10 microg/ml, respectively, and decreased to 0.5 and 0.625 microg/ml when the two drugs were combined. The combination of 0.625 microg of Cy per ml with supra-MICs of FLC resulted in a potent antifungal effect in time-kill curve experiments. This effect was fungicidal or fungistatic, depending on the C. albicans strain used. Since the Cy concentration effective in vitro is achievable in vivo, the combination of this agent with FLC represents an attractive perspective for the development of new management strategies for candidiasis.
Resumo:
An experimental model of murine chromoblastomycosis and in vitro tests with Fonsecaea pedrosoi were used to test the sensitivity of this fungus to three different antimycotics. The experimental model was standardized in BALB/c mice inoculated intraperitoneally with a 10(6) CFU/ml suspension of a F. pedrosoi isolate. Clinical infection was evident after 5 days of inoculation. Three groups of 27 mice each were used in the experiment. One group was treated with ketoconazole (KTZ), another with itraconazole (ITZ) and the other with saperconazole (SPZ). Antimycotic therapy was continued for 21 days. The control group consisted of 40 mice which were inoculated, but not treated. Infection was documented by macroscopic and microscopic examination of affected tissue in addition to culture of tissue macerates. Minimal inhibitory concentrations (MIC) and minimal fungicidal concentrations (MFC) for the F. pedrosoi strain used were done. The in vitro results showed that SPZ was the most active with MIC 0.01 mg/ml and MFC 0.1 mg/ml, followed by ITZ. SPZ was also the most effective in vivo since 63% of the treated animals (p=0.01) showed a curative effect after the observation period. We concluded that SPZ had the best in vitro and in vivo activity against F. pedrosoi.
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)
Resumo:
A espécie Pyrostegia venusta é uma liana trepadeira popularmente conhecida como flor-de-São-João. É utilizada na medicina popular para o tratamento de diversas doenças. Na literatura científica, vários compostos bioativos já foram isolados e algumas atividades biológicas importantes, como a atividade antimicrobiana e imunomoduladora, já foram atribuídas a esta espécie. A cárie e a doença periodontalsão as doenças bucais mais prevalentes na população brasileira, sendo o biofilme dental o seu fator etiológico primário. A candidíase oral ocorre devido à infecção por espécies do gênero Candida que, em determinadas situações, podem se comportar como patógenos oportunistas. O objetivo deste trabalho foi realizar um estudo físico, químico e biológico da espécie vegetal Pyrostegia venusta e investigar seu potencial na prevenção das principais doenças bucais. Foram realizados ensaios de citotoxicidade do extrato bruto e frações em células mononucleares do sangue periférico e em macrófagos murinos. Para avaliar a atividade imunomoduladora do extrato bruto e frações, foi realizada dosagem de óxido nítrico (NO) produzido por macrófagos estimulados com lipopolissacarídeo (LPS). Foi realizado ensaio de microdiluição em caldo para determinar a concentração inibitória mínima (CIM), concentração bactericida mínima (CBM) e concentração fungicida mínima (CFM) do extrato bruto, frações e marcadores. Também foram avaliados o efeito na inibição da aderência de Streptococcus mutans em lamínula de vidro, o efeito na redução do pH e a capacidade de inibição do brotamento de Candida albicans do extrato bruto e frações. A espécie Pyrostegia venusta não foi citotóxica em baixas concentrações. A produção de NO foi inibida pelas frações acetato de etila e n-butanólica. O extrato bruto, frações e marcadores apresentaram atividade antimicrobiana contra Streptococcus mutans, Streptococcus mitis, Streptococcus oralis e Candida albicans, capacidade de inibição da aderência e redução do pH. O extrato bruto e frações hexânica, acetato de etila e n-butanólica apresentaram capacidade de inibição do brotamento. A espécie Pyrostegia venusta pode ser uma alternativa na prevenção e tratamento das principais doenças bucais. No entanto, mais estudos são necessários antes de considerá-la realmente promissora.
Resumo:
The severity and frequency of opportunistic fungal infections still growing, concomitantly to the increasing rates of antimicrobial drug’s resistance. Natural matrices have been used over years due to its multitude of health benefits, including antifungal potential. Thus, the present work aims to evaluate the anti-Candida potential of the phenolic extract and individual phenolic compounds of Glycyrrhiza glabra L. (licorice), by disc diffusion assay, followed by determination of the minimal inhibitory concentration (MIC) and minimal fungicidal concentration (MFC) for both planktonic cells and biofilms. Licorice extract evidenced inhibitory potential against the nineteen tested Candida strains, but no pronounced effect was observed by testing the most abundant individual phenolic compounds. Candida tropicalis strains were the most sensible, followed by Candida glabrata, Candida parapsilosis and, then, Candida albicans. Lower MIC and MFC values were achieved to C. glabrata and C. tropicalis, which confirms its susceptibility to licorice extract; however, for C. tropicalis strains a higher variability was observed. Anti-biofilm potential was also achieved, being most evident in some C. glabrata and C. tropicalis strains. In general, a twice concentration of the MIC was necessary for planktonic cells to obtain a similar potential to that one observed for biofilms. Thus, an upcoming approach for new antifungal agents, more effective and safer than the current ones, is stablished; notwithstanding, further studies are necessary in order to understand its mechanism of action, as also to assess kinetic parameters.
Resumo:
Essential oils (EO) obtained from twenty medicinal and aromatic plants were evaluated for their antimicrobial activity against the oral pathogens Candida albicans, Fusobacterium nucleatum, Porphyromonas gingivalis, Streptococcus sanguis and Streptococcus mitis. The antimicrobial activity of the EO was evaluates by microdilution method determining Minimal Inhibitory Concentration. Chemical analysis of the oils compounds was performed by Gas chromatography-mass spectrometry (CG-MS). The most active EO were also investigated as to their actions on the biolfilm formation. The most of the essential oils (EO) presented moderate to strong antimicrobial activity against the oral pathogens (MIC--Minimal Inhibitory Concentrations values between 0.007 and 1.00 mg/mL). The essential oil from Coriandrum sativum inhibited all oral species with MIC values from 0.007 to 0.250 mg/mL, and MBC/MFC (Minimal Bactericidal/Fungicidal Concentrations) from 0.015 to 0.500 mg/mL. On the other hand the essential oil of C. articulatus inhibited 63.96% of S. sanguis biofilm formation. Through Scanning Eletronic Microscopy (SEM) images no changes were observed in cell morphology, despite a decrease in biofilm formation and changes on biofilm structure. Chemical analysis by Gas Chromatography-Mass Spectrometry (GC-MS) of the C. sativum essential oil revealed major compounds derivatives from alcohols and aldehydes, while Cyperus articulatus and Aloysia gratissima (EOs) presented mono and sesquiterpenes. In conclusion, the crude oil from C. articulatus exhibited the best results of antimicrobial activity e ability to control biofilm formation. The chemical analysis showed the presence of terpenes and monoterpenes such as a-pinene, a-bulnesene and copaene. The reduction of biofilms formation was confirmed from SEM images. The results of this research shows a great potential from the plants studied as new antimicrobial sources.
Resumo:
The aim of the present study was to evaluate the antimicrobial and cytotoxic activity of the ethanolic extract of S. cumini according to the Clinical and Laboratory Standards Institute reference method (with modifications), determining the minimal inhibitory and lethal concentration. Activity against Gram-positive (Staphylococcus aureus and S. epidermidis), Gram-negative (Pseudomonas aeruginosa) and yeast of Candida sp and Cryptococcus neoformans was evaluated. The effects of the fruit extract were examined in hamster cells ovaries in concentrations ranging from 1250.0 a 4.9 mu g/ml, measuring the reduction of the tetrazolium salt 3-(4,5-dimethylthiazol-2-yl)-5-(3-carboxymethoxyphenyl)-2-(4-sulphophenyl)-2H-tetrazolium. The extract showed both bactericidal and fungicidal activity among the various microorganisms tested and the MIC ranging from 7.8 to 250 mu g/ml. The MIC, MBC and MFC should values that were similar for all the microorganisms. Cytotoxicity index of the dried extract corresponded to the concentration of 400 mu g/ml. The extract could potentially be used in topical antimicrobial products. Thus, the activity of extract was potent to bacteria and mainly to non-albicans species and C. neoformans.
Resumo:
The 5-Isopropyl-3-[4-(6-methoxy-quinolin-8-ylamino)-pentyl]-2,2-dimethyl-imidazolidin-4-one (ValPQacet) was sinthesized through acylation of the anti-malarial primaquine with α-valine and subsequent reaction of the resulting -aminoamide with propanone (Sheme 1).Imidazolidin-4-ones of the anti malarial primaquine are being sinthesized to develop new variants in order to improve more effective treatments against malaria . Recently it has been observed that primaquine derivates could have effect in a new kind of yeast . To study the fungicidal activity against Candida albicans, Candida tropicalis, Issatchenkia orientalis, Sacharomyces cerevisae, the ValPQacet was put in the form of the hydrochloride salt. The minimal inhibitory concentration (MIC) could be determined for all yeast in the concentration range assayed. Also was determined MIC’s of primaquine hydrochloride salt for all yeast, and this shows that the parent drug is less active than our compound. Further studies are being performed to determine viability and cellular injury with this drugs.
Resumo:
A study was conducted to determine the susceptibility of P. brasiliensis yeast form to amphotericin B (A), ketoconazole (K), 5-fluorocytosine (5-FC) and rifampin (R). The three isolates tested produced minimal inhibitory concentrations (MICs) (mcg/ml) in the following range: A: 0.09-0.18; K: 0.001-0.007; 5-FC: 62.5-250 and R: 40-80. The minimal fungicidal concentrations (MFC) were several times higher than the corresponding MICs. Precise MFC for 5-FC were not obtained (> 500 mcg/ml). Combination of K plus A proved synergic, with the fractional inhibitory concentration (FIC) indices revealing synergy when the drugs were combined at the 1 to 1 and 1 to 5 MIC ratios. R (40 mcg/ml) appeared to antagonize K. These results indicate promise for the combined use of K plus A as a therapeutical regimen.
Resumo:
Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)
Resumo:
The aim of the present study was to investigate the effect of chlorhexidine at subinhibitory concentration (50% minimal inhibitory concentration (MIC)) on the growth, cytolysin expression and phagocytosis of Streptococcus agalactiae ATCC 13813. Bacterial growth with and without chlorhexidine treatment was monitored by turbidity measurements, and exocytolysins were estimated by neutral red uptake assay by the McCoy cell line. The phagocytic process was evaluated using luminol-enhanced chemiluminescence to follow the respiratory burst of polymorphonuclear neutrophils exposed to bacteria. Chlorhexidine-treated culture did not exhibit a detectable decrease in cell growth, and no statistically significant reduction in the respiratory burst of polymorphonuclear neutrophils was observed. However, growth in the presence of chlorhexidine resulted in a significant reduction of S. agalactiae exocytolysins. Although 50% MIC of chlorhexidine did not interfere with S. agalactiae growth and phagocytosis, the knowledge that this concentration was still able to alter some bacterial virulence parameters may be useful in its therapeutic applications. (c) 2006 Elsevier B.V. and the International Society of Chemotherapy. All rights reserved.