991 resultados para milling quality


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Eight milling quality and protein properties of autumn-sown Chinese wheats were investigated using 59 cultivars and advanced lines grown in 14 locations in China from 1995 to 1998. Wide ranges of variability for all traits were observed across genotypes and locations. Genotype, location, year, and their interactions all significantly influenced most of the quality parameters. Kernel hardness, Zeleny sedimentation value, and mixograph development time were predominantly influenced by the effects of genotype. Genotype, location and genotype x location interaction were all important sources of variation for thousand kernel weight, test weight, protein content, and falling number, whereas genotype x location interaction had the largest effect on flour yield. Most of the genotypes were characterized by weak gluten strength with Zeleny sedimentation values less than 40 ml and mixograph development time shorter than 3 min. Eight groups of genotypes were recognized based on the average quality performance, grain hardness and gluten strength were the two parameters that determined the grouping, with contributions from protein content. Genotypes such as Zhongyou 16 and Annong 8903 displayed good milling quality, high grain hardness, protein content and strong gluten strength with high sedimentation value and long mixograph development time. Genotypes such as Lumai 15 and Yumai 18 were characterized by low grain hardness, protein content and weak gluten strength. Genotypes such as Yannong 15 and Chuanmai 24 were characterized by strong gluten strength with high sedimentation value and long mixograph development time, but low grain hardness and protein content lower than 12.3%. Genotypes such as Jingdong 6 and Xi'an 8 had weak gluten strength, but with high grain hardness and protein content higher than 12.2%. Five groups of locations were identified, and protein content and gluten strength were the two parameters that determined the grouping. Beijing, Shijiazhuang, Nanyang, Zhumadian and Nanjing produced wheats with medium to strong gluten strength and medium protein content, although there was still a large variation for most of the traits investigated between the locations. Wheat produced in Yantai was characterized by strong gluten strength, but with low protein content. Jinan, Anyang and Linfen locations produced wheats with medium to weak gluten strength and medium to high protein content. Wheats produced in Yangling, Zhenzhou, and Chengdu were characterized by weak gluten strength with medium to low protein content, whereas wheats produced in Xuzhou and Wuhan were characterized by weak gluten strength with low protein content. Industrial grain quality could be substantially improved through integrating knowledge of geographic genotype distribution with key location variables that affected end-use quality.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

Improvement of end-use quality in bread wheat depends on a thorough understanding of current wheat quality and the influences of genotype (G), environment (E), and genotype by environment interaction (G x E) on quality traits. Thirty-nine spring-sown spring wheat (SSSW) cultivars and advanced lines from China were grown in four agro-ecological zones comprising seven locations during the 1998 and 1999 cropping seasons. Data on 12 major bread-making quality traits were used to investigate the effect of G, E, and G x E on these traits. Wide range variability for protein quantity and quality, starch quality parameters and milling quality in Chinese SSSW was observed. Genotype and environment were found to significantly influence all quality parameters as major effects. Kernel hardness, flour yield, Zeleny sedimentation value and mixograph properties were mainly influenced by the genetic variance components, while thousand kernel weight, test weight, and falling number were mostly influenced by the environmental variance components. Genotype, environment, and their interaction had important effects on test weight, mixing development time and RVA parameters. Cultivars originating from Zone VI (northeast) generally expressed high kernel hardness, good starch quality, but poor milling and medium to weak mixograph performance; those from Zone VII (north) medium to good gluten and starch quality, but low milling quality; those from Zone VIII (central northwest) medium milling and starch quality, and medium to strong mixograph performance; those from Zone IX (western/southwestern Qinghai-Tibetan Plateau) medium milling quality, but poor gluten strength and starch parameters; and those from Zone X (northwest) high milling quality, strong mixograph properties, but low protein content. Samples from Harbin are characterized by good gluten and starch quality, but medium to poor milling quality; those from Hongxinglong by strong mixograph properties, medium to high milling quality, but medium to poor starch quality and medium to low protein content; those from Hohhot by good gluten but poor milling quality; those from Linhe by weak gluten quality, medium to poor milling quality; those from Lanzhou by poor bread-making and starch quality; those from Yongning by acceptable bread-making and starch quality and good milling quality; and those from Urumqi by good milling quality, medium gluten quality and good starch pasting parameters. Our findings suggest that Chinese SSSW quality could be greatly enhanced through genetic improvement for targeted well-characterized production environments.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Na região tritícola sul-brasileira predominam invernos com temperatura baixa (mínima absoluta, em dias com geada, de até - 8,0ºC). No entanto, a incidência de elevada temperatura (máxima absoluta, em dias isolados entre outubro e novembro, de até 41,0ºC) pode ser encontrada durante todo o período de enchimento de grãos e na maturação fisiológica. Este trabalho teve por objetivos verificar a influência das temperaturas mínima e máxima na qualidade industrial e no rendimento de grãos. Foram usados dados de experimentos com trigo Empresa Brasileira de Pesquisa Agropecuária (EMBRAPA) 16, conduzidos nos anos de 1990 a 1998, em sete locais do Rio Grande do Sul e em quatro locais de Santa Catarina. A análise estatística realizada foi correlações múltiplas. Verificou-se que, nos diferentes períodos analisados: a) o aumento da temperatura máxima média resultou em acréscimo do peso de mil grãos, do rendimento de grãos, da força geral de glúten, da microssedimentação com dodecil sulfato de sódio e do número de queda: b) o peso do hectolitro (exceção feita ao período final de maturação fisiológica), o peso de mil grãos, o número de queda e a extração experimental de farinha foram influenciados negativamente pela temperatura mínima média; c) a temperatura mínima média influenciou positivamente a força geral de glúten, a relação P/L e a microssedimentação com dodecil sulfato de sódio.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Effect of lactic acid, SO2, temperature, and their interactions were assessed on the dynamic steeping of a Brazilian dent corn (hybrid XL 606) to determine the ideal relationship among these variables to improve the wet-milling process for starch and corn by-products production. A 2x2x3 factorial experimental design was used with SO2 levels of 0.05 and 0.1% (w/v), lactic acid levels of 0 and 0.5% (v/v), and temperatures of 52, 60, and 68degreesC. Starch yield was used as deciding factor to choose the best treatment. Lactic acid added in the steep solution improved the starch yield by an average of 5.6 percentage points. SO2 was more available to break down the structural protein network at 0.1% than at the 0.05% level. Starch-gluten separation was difficult at 68degreesC. The lactic acid and SO2 concentrations and steeping temperatures for better starch recovery were 0.5, 0.1, and 52degreesC, respectively. The Intermittent Milling and Dynamic Steeping (IMDS) process produced, on average, 1.4% more starch than the conventional 36- hr steeping process. Protein in starch, oil content in germ, and germ damage were used as quality factors. Total steep time can be reduced from 36 hr for conventional wet-milling to 8 hr for the IMDS process.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

The intermittent milling and dynamic steeping (IMDS) process is an alternative method developed for wet milling of maize. In this process, the steeping stage can be reduced to 5 h by soaking maize in water at 60°C for 2 h and cracking the kernels to remove solution components diffusional barriers with minimum germ damage. Maize was dynamically steeped in solutions with 0.0, 0.1, and 0.2% sulphur dioxide (SO2) and 0.00, 0.55% lactic acid. Germ recovery, germ damage, fibre in germ, oil content and uncracked kernels were determined. A conventional steeping procedure was also performed. Germ recovery was higher for all tests using both SO2 and lactic acid than for the others with best germ yield for concentrations of 0.2% SO2 and 0.55% lactic acid. Germ damage ranged from 7.4 to 18.2% for all tests. The presence of lactic acid in the steeping solution decreased the amount of fibre in germ fraction. Germ oil content ranged from 39.3% (0-0% SO2, 0.55% lactic acid) to 44.0% (0.2% SO2, 0.55% lactic acid) for all treatments using IMDS. The smallest difference was 5.5% between IMDS (0.2% SO2, 0.55% lactic acid) and the conventional 36 h steeping process. An average of 1.3% of kernels remained uncracked after IMDS process. © 2002 Silsoe Research Institute. Published by Elsevier Science Ltd. All rights reserved.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Despite recent efforts to assess the release of nanoparticles to the workplace during different nanotechnology activities, the existence of a generalizable trend in the particle release has yet to be identified. This study aimed to characterize the release of synthetic clay nanoparticles from a laboratory-based jet milling process by quantifying the variations arising from primary particle size and surface treatment of the material used, as well as the feed rate of the machine. A broad range of materials were used in this study, and the emitted particles mass (PM2.5) and number concentrations (PNC) were measured at the release source. Analysis of variance, followed by linear mixed-effects modeling, was applied to quantify the variations in PM2.5 and PNC of the released particles caused by the abovementioned factors. The results confirmed that using materials of different primary size and surface treatment affects the release of the particles from the same process by causing statistically-significant variations in PM2.5 and PNC. The interaction of these two factors should also be taken into account as it resulted in variations in the measured particles release properties. Furthermore, the feed rate of the milling machine was confirmed to be another influencing parameter. Although this research does not identify a specific pattern in the release of synthetic clay nanoparticles from the jet milling process generalizable to other similar settings, it emphasizes that each tested case should be handled individually in terms of exposure considerations.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

In the field of workplace air quality, measuring and analyzing the size distribution of airborne particles to identify their sources and apportion their contribution has become widely accepted, however, the driving factors that influence this parameter, particularly for nanoparticles (< 100 nm), have not been thoroughly determined. Identification of driving factors, and in turn, general trends in size distribution of emitted particles would facilitate the prediction of nanoparticles’ emission behavior and significantly contribute to their exposure assessment. In this study, a comprehensive analysis of the particle number size distribution data, with a particular focus on the ultrafine size range of synthetic clay particles emitted from a jet milling machine was conducted using the multi-lognormal fitting method. The results showed relatively high contribution of nanoparticles to the emissions in many of the tested cases, and also, that both surface treatment and feed rate of the machine are significant factors influencing the size distribution of the emitted particles of this size. In particular, applying surface treatments and increasing the machine feed rate have the similar effect of reducing the size of the particles, however, no general trend was found in variations of size distribution across different surface treatments and feed rates. The findings of our study demonstrate that for this process and other activities, where no general trend is found in the size distribution of the emitted airborne particles due to dissimilar effects of the driving factors, each case must be treated separately in terms of workplace exposure assessment and regulations.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

La millora de la productivitat i la qualitat són indubtablement dues de les principals exigències del sector productiu modern i factors clau per la competitivitat i la supervivència. Dins aquest sector,la fabricació per arrancada de material juga encara avui en dia un paper protagonista tot i l'aparició de noves tècniques de conformat per addició.Indústries com l'aeronàutica, l'automobilística,la del motlle o l'energètica, depenen en bona part de les prestacions de les màquines-eina. Aquesta Tesi aborda dos aspectes rellevants quan es tracta de millorar de la productivitat i la qualitat del sector productiu: el problema del fimbrament, més conegut per la denominació anglosaxona chatter,i la monitorització de la rugositat superficial en el mecanitzat a alta velocitat.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Physicochemical properties of maize starch obtained under different steeping conditions by intermittent milling and dynamic steeping process (IMDS) were studied. Brazilian dent maize (hybrid XL 606) was milled using a 2x2x3 factorial experimental design with two lactic acid levels (0.0 and 0.55%, v/v), two SO2 levels (0.05 and 0.1%, w/v), and three temperatures (52, 60, and 68degreesC). Properties of starch obtained by conventional wet-milling process (36 hr at 52degreesC, 0.55% lactic acid, and 0.2% SO2) were used for comparison. Starch protein content and solubility increased with presence of lactic acid, while swelling power decreased. Higher SO2 concentration (0.1%) had the same effect as lactic acid on some properties. Steeping temperatures of 60 and 68degreesC increased solubility and most of the thermal properties but reduced swelling power, suggesting stronger starch annealing during IMDS at these temperatures. Some thermal changes on starch granules were visualized by scanning electron microscopy (SEM) at 60 and 68degreesC. Amylose content as well as pasting properties were affected by steeping factors and interactions. Starches from IMDS and conventional wet-milling processes were similar in most properties, indicating that IMDS provides starch with quality similar to that from conventional milling.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Yields and starch pasting characteristics obtained from wet milling of maize samples with low and high levels of defect grains were compared to those from sound samples. Defect grain groups ere established taking into account the defect degree. Thus the first group consisted of fermented, molded, heated and sprouted grains and the second of insect damaged. hollow, fermented (up to 1/4) grains and those injured by other causes. The grain groups, if present at low levels in the samples, 10% for first group and 17% for second group did not affect the chemical composition of starch and its pasting properties. obtained by the rapid visco analyser. Samples with high levels of grain groups (up to 100%). affected wet milling yields and starch viscosity. Samples with 100% of grains in the first group decreased starch, germ yield and peak viscosity and increased gluten yield. Samples with 100% of grains in the second group decreased germ and fiber yield but increased starch yield. (C) 2002 Elsevier B.V. Ltd. All rights reserved.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)

Relevância:

30.00% 30.00%

Publicador:

Resumo:

During ethanol production, starch is the primary nutrient fermented and the remaining byproducts are excellent sources of fiber and protein. In addition, inclusion of byproducts in finishing diets may reduce the incidence of acidosis. As a result, roughage level and quality could potentially be reduced in finishing diets containing byproducts. Three experiments were conducted to examine the effects of roughage and wet corn gluten feed (WCGF) in finishing cattle diets containing corn distillers grains plus solubles. Cattle fed finishing diets containing wet distillers grains plus solubles (WDGS) with no roughage had decreased DMI and ADG compared to cattle fed roughage. Within roughage level, ADG was similar for cattle fed alfalfa hay, corn silage or corn stalks when included on an equal NDF basis. Apparent total tract digestibility of OM, NDF, and CP linearly decreased and ruminal pH variables increased linearly due to increasing roughage levels. Roughage sources can be exchanged on an equal NDF basis in beef finishing diets containing 30% WDGS (DM basis). In finishing diets containing modified distillers grains plus solubles (MDGS), DMI linearly increased due to increasing roughage levels but ADG responded quadratically and was lowest for cattle fed diets without roughage. There was also a quadratic response for DMI and ADG due to WCGF inclusion level. Gain:feed decreased linearly with increasing roughage and WCGF inclusion levels. Feeding 15% WCGF resulted in similar cattle performance and carcass traits to cattle fed no WCGF in diets containing 30% MDGS, but cattle fed diets with 60% total byproduct inclusion made up of 30% WCGF and 30% MDGS had reduced performance (DM basis). Additionally, reducing corn silage inclusion level to 7.5% resulted in similar finishing cattle performance and carcass traits to cattle fed 15% corn silage in diets containing 30% MDGS with or without inclusion of WCGF. Elimination of roughage in diets containing either WDGS or MDGS resulted in negative impacts on finishing cattle performance, ruminal metabolism, and carcass traits.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

A protocol of selection, training and validation of the members of the panel for bread sensory analysis is proposed to assess the influence of wheat cultivar on the sensory quality of bread. Three cultivars of bread wheat and two cultivars of spelt wheat organically-grown under the same edaphoclimatic conditions were milled and baked using the same milling and baking procedure. Through the use of triangle tests, differences were identified between the five breads. Significant differences were found between the spelt breads and those made with bread wheat for the attributes ?crumb cell homogeneity? and ?crumb elasticity?. Significant differences were also found for the odor and flavor attributes, with the bread made with ?Espelta Navarra? being the most complex, from a sensory point of view. Based on the results of this study, we propose that sensory properties should be considered as breeding criteria for future work on genetic improvement.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Surface quality is important in engineering and a vital aspect of it is surface roughness, since it plays an important role in wear resistance, ductility, tensile, and fatigue strength for machined parts. This paper reports on a research study on the development of a geometrical model for surface roughness prediction when face milling with square inserts. The model is based on a geometrical analysis of the recreation of the tool trail left on the machined surface. The model has been validated with experimental data obtained for high speed milling of aluminum alloy (Al 7075-T7351) when using a wide range of cutting speed, feed per tooth, axial depth of cut and different values of tool nose radius (0.8. mm and 2.5. mm), using the Taguchi method as the design of experiments. The experimental roughness was obtained by measuring the surface roughness of the milled surfaces with a non-contact profilometer. The developed model can be used for any combination of material workpiece and tool, when tool flank wear is not considered and is suitable for using any tool diameter with any number of teeth and tool nose radius. The results show that the developed model achieved an excellent performance with almost 98% accuracy in terms of predicting the surface roughness when compared to the experimental data. © 2014 The Society of Manufacturing Engineers.